123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
- /**
- * stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
- * Derived from Grbl
- *
- * Copyright (c) 2009-2011 Simen Svale Skogsrud
- *
- * Grbl is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * Grbl is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
- */
- #ifndef STEPPER_H
- #define STEPPER_H
- #include "MarlinConfig.h"
- // Disable multiple steps per ISR
- //#define DISABLE_MULTI_STEPPING
- //
- // Estimate the amount of time the Stepper ISR will take to execute
- //
- #ifndef MINIMUM_STEPPER_PULSE
- #define MINIMUM_STEPPER_PULSE 0UL
- #endif
- #ifndef MAXIMUM_STEPPER_RATE
- #if MINIMUM_STEPPER_PULSE
- #define MAXIMUM_STEPPER_RATE (1000000UL / (2UL * (unsigned long)(MINIMUM_STEPPER_PULSE)))
- #else
- #define MAXIMUM_STEPPER_RATE 500000UL
- #endif
- #endif
- // The base ISR takes 752 cycles
- #define ISR_BASE_CYCLES 752UL
- // Linear advance base time is 32 cycles
- #if ENABLED(LIN_ADVANCE)
- #define ISR_LA_BASE_CYCLES 32UL
- #else
- #define ISR_LA_BASE_CYCLES 0UL
- #endif
- // S curve interpolation adds 160 cycles
- #if ENABLED(S_CURVE_ACCELERATION)
- #define ISR_S_CURVE_CYCLES 160UL
- #else
- #define ISR_S_CURVE_CYCLES 0UL
- #endif
- // Stepper Loop base cycles
- #define ISR_LOOP_BASE_CYCLES 32UL
- // To start the step pulse, in the worst case takes
- #define ISR_START_STEPPER_CYCLES 57UL
- // And each stepper (start + stop pulse) takes in worst case
- #define ISR_STEPPER_CYCLES 88UL
- // Add time for each stepper
- #ifdef HAS_X_STEP
- #define ISR_START_X_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
- #define ISR_X_STEPPER_CYCLES ISR_STEPPER_CYCLES
- #else
- #define ISR_START_X_STEPPER_CYCLES 0UL
- #define ISR_X_STEPPER_CYCLES 0UL
- #endif
- #ifdef HAS_Y_STEP
- #define ISR_START_Y_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
- #define ISR_Y_STEPPER_CYCLES ISR_STEPPER_CYCLES
- #else
- #define ISR_START_Y_STEPPER_CYCLES 0UL
- #define ISR_Y_STEPPER_CYCLES 0UL
- #endif
- #ifdef HAS_Z_STEP
- #define ISR_START_Z_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
- #define ISR_Z_STEPPER_CYCLES ISR_STEPPER_CYCLES
- #else
- #define ISR_START_Z_STEPPER_CYCLES 0UL
- #define ISR_Z_STEPPER_CYCLES 0UL
- #endif
- // E is always interpolated, even for mixing extruders
- #define ISR_START_E_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
- #define ISR_E_STEPPER_CYCLES ISR_STEPPER_CYCLES
- // If linear advance is disabled, then the loop also handles them
- #if DISABLED(LIN_ADVANCE) && ENABLED(MIXING_EXTRUDER)
- #define ISR_START_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_START_STEPPER_CYCLES))
- #define ISR_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
- #else
- #define ISR_START_MIXING_STEPPER_CYCLES 0UL
- #define ISR_MIXING_STEPPER_CYCLES 0UL
- #endif
- // Calculate the minimum time to start all stepper pulses in the ISR loop
- #define MIN_ISR_START_LOOP_CYCLES (ISR_START_X_STEPPER_CYCLES + ISR_START_Y_STEPPER_CYCLES + ISR_START_Z_STEPPER_CYCLES + ISR_START_E_STEPPER_CYCLES + ISR_START_MIXING_STEPPER_CYCLES)
- // And the total minimum loop time, not including the base
- #define MIN_ISR_LOOP_CYCLES (ISR_X_STEPPER_CYCLES + ISR_Y_STEPPER_CYCLES + ISR_Z_STEPPER_CYCLES + ISR_E_STEPPER_CYCLES + ISR_MIXING_STEPPER_CYCLES)
- // Calculate the minimum MPU cycles needed per pulse to enforce, limited to the max stepper rate
- #define _MIN_STEPPER_PULSE_CYCLES(N) MAX((unsigned long)((F_CPU) / (MAXIMUM_STEPPER_RATE)), ((F_CPU) / 500000UL) * (N))
- #if MINIMUM_STEPPER_PULSE
- #define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES((unsigned long)(MINIMUM_STEPPER_PULSE))
- #else
- #define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(1UL)
- #endif
- // Calculate the minimum ticks of the PULSE timer that must elapse with the step pulse enabled
- // adding the "start stepper pulse" code section execution cycles to account for that not all
- // pulses start at the beginning of the loop, so an extra time must be added to compensate so
- // the last generated pulse (usually the extruder stepper) has the right length
- #define MIN_PULSE_TICKS (((PULSE_TIMER_TICKS_PER_US) * (unsigned long)(MINIMUM_STEPPER_PULSE)) + ((MIN_ISR_START_LOOP_CYCLES) / (unsigned long)(PULSE_TIMER_PRESCALE)))
- // Calculate the extra ticks of the PULSE timer between step pulses
- #define ADDED_STEP_TICKS (((MIN_STEPPER_PULSE_CYCLES) / (PULSE_TIMER_PRESCALE)) - (MIN_PULSE_TICKS))
- // But the user could be enforcing a minimum time, so the loop time is
- #define ISR_LOOP_CYCLES (ISR_LOOP_BASE_CYCLES + MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LOOP_CYCLES))
- // If linear advance is enabled, then it is handled separately
- #if ENABLED(LIN_ADVANCE)
- // Estimate the minimum LA loop time
- #if ENABLED(MIXING_EXTRUDER)
- #define MIN_ISR_LA_LOOP_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
- #else
- #define MIN_ISR_LA_LOOP_CYCLES ISR_STEPPER_CYCLES
- #endif
- // And the real loop time
- #define ISR_LA_LOOP_CYCLES MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LA_LOOP_CYCLES)
- #else
- #define ISR_LA_LOOP_CYCLES 0UL
- #endif
- // Now estimate the total ISR execution time in cycles given a step per ISR multiplier
- #define ISR_EXECUTION_CYCLES(R) (((ISR_BASE_CYCLES + ISR_S_CURVE_CYCLES + (ISR_LOOP_CYCLES) * (R) + ISR_LA_BASE_CYCLES + ISR_LA_LOOP_CYCLES)) / (R))
- // The maximum allowable stepping frequency when doing x128-x1 stepping (in Hz)
- #define MAX_STEP_ISR_FREQUENCY_128X ((F_CPU) / ISR_EXECUTION_CYCLES(128))
- #define MAX_STEP_ISR_FREQUENCY_64X ((F_CPU) / ISR_EXECUTION_CYCLES(64))
- #define MAX_STEP_ISR_FREQUENCY_32X ((F_CPU) / ISR_EXECUTION_CYCLES(32))
- #define MAX_STEP_ISR_FREQUENCY_16X ((F_CPU) / ISR_EXECUTION_CYCLES(16))
- #define MAX_STEP_ISR_FREQUENCY_8X ((F_CPU) / ISR_EXECUTION_CYCLES(8))
- #define MAX_STEP_ISR_FREQUENCY_4X ((F_CPU) / ISR_EXECUTION_CYCLES(4))
- #define MAX_STEP_ISR_FREQUENCY_2X ((F_CPU) / ISR_EXECUTION_CYCLES(2))
- #define MAX_STEP_ISR_FREQUENCY_1X ((F_CPU) / ISR_EXECUTION_CYCLES(1))
- // The minimum allowable frequency for step smoothing will be 1/10 of the maximum nominal frequency (in Hz)
- #define MIN_STEP_ISR_FREQUENCY MAX_STEP_ISR_FREQUENCY_1X
- //
- // Stepper class definition
- //
- #include "planner.h"
- #include "speed_lookuptable.h"
- #include "stepper_indirection.h"
- #include "language.h"
- #include "types.h"
- // intRes = intIn1 * intIn2 >> 16
- // uses:
- // r26 to store 0
- // r27 to store the byte 1 of the 24 bit result
- static FORCE_INLINE uint16_t MultiU16X8toH16(uint8_t charIn1, uint16_t intIn2) {
- register uint8_t tmp;
- register uint16_t intRes;
- __asm__ __volatile__ (
- A("clr %[tmp]")
- A("mul %[charIn1], %B[intIn2]")
- A("movw %A[intRes], r0")
- A("mul %[charIn1], %A[intIn2]")
- A("add %A[intRes], r1")
- A("adc %B[intRes], %[tmp]")
- A("lsr r0")
- A("adc %A[intRes], %[tmp]")
- A("adc %B[intRes], %[tmp]")
- A("clr r1")
- : [intRes] "=&r" (intRes),
- [tmp] "=&r" (tmp)
- : [charIn1] "d" (charIn1),
- [intIn2] "d" (intIn2)
- : "cc"
- );
- return intRes;
- }
- class Stepper {
- public:
- #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
- static bool homing_dual_axis;
- #endif
- #if HAS_MOTOR_CURRENT_PWM
- #ifndef PWM_MOTOR_CURRENT
- #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
- #endif
- static uint32_t motor_current_setting[3];
- #endif
- private:
- static block_t* current_block; // A pointer to the block currently being traced
- static uint8_t last_direction_bits, // The next stepping-bits to be output
- axis_did_move; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
- static bool abort_current_block; // Signals to the stepper that current block should be aborted
- #if DISABLED(MIXING_EXTRUDER)
- static uint8_t last_moved_extruder; // Last-moved extruder, as set when the last movement was fetched from planner
- #endif
- #if ENABLED(X_DUAL_ENDSTOPS)
- static bool locked_X_motor, locked_X2_motor;
- #endif
- #if ENABLED(Y_DUAL_ENDSTOPS)
- static bool locked_Y_motor, locked_Y2_motor;
- #endif
- #if ENABLED(Z_DUAL_ENDSTOPS)
- static bool locked_Z_motor, locked_Z2_motor;
- #endif
- static uint32_t acceleration_time, deceleration_time; // time measured in Stepper Timer ticks
- static uint8_t steps_per_isr; // Count of steps to perform per Stepper ISR call
- #if ENABLED(ADAPTIVE_STEP_SMOOTHING)
- static uint8_t oversampling_factor; // Oversampling factor (log2(multiplier)) to increase temporal resolution of axis
- #else
- static constexpr uint8_t oversampling_factor = 0;
- #endif
- // Delta error variables for the Bresenham line tracer
- static int32_t delta_error[NUM_AXIS];
- static uint32_t advance_dividend[NUM_AXIS],
- advance_divisor,
- step_events_completed, // The number of step events executed in the current block
- accelerate_until, // The point from where we need to stop acceleration
- decelerate_after, // The point from where we need to start decelerating
- step_event_count; // The total event count for the current block
- // Mixing extruder mix delta_errors for bresenham tracing
- #if ENABLED(MIXING_EXTRUDER)
- static int32_t delta_error_m[MIXING_STEPPERS];
- static uint32_t advance_dividend_m[MIXING_STEPPERS],
- advance_divisor_m;
- #define MIXING_STEPPERS_LOOP(VAR) \
- for (uint8_t VAR = 0; VAR < MIXING_STEPPERS; VAR++)
- #else
- static int8_t active_extruder; // Active extruder
- #endif
- #if ENABLED(S_CURVE_ACCELERATION)
- static int32_t bezier_A, // A coefficient in Bézier speed curve
- bezier_B, // B coefficient in Bézier speed curve
- bezier_C; // C coefficient in Bézier speed curve
- static uint32_t bezier_F, // F coefficient in Bézier speed curve
- bezier_AV; // AV coefficient in Bézier speed curve
- static bool A_negative, // If A coefficient was negative
- bezier_2nd_half; // If Bézier curve has been initialized or not
- #endif
- static uint32_t nextMainISR; // time remaining for the next Step ISR
- #if ENABLED(LIN_ADVANCE)
- static uint32_t nextAdvanceISR, LA_isr_rate;
- static uint16_t LA_current_adv_steps, LA_final_adv_steps, LA_max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early".
- static int8_t LA_steps;
- static bool LA_use_advance_lead;
- #endif // LIN_ADVANCE
- static int32_t ticks_nominal;
- #if DISABLED(S_CURVE_ACCELERATION)
- static uint32_t acc_step_rate; // needed for deceleration start point
- #endif
- static volatile int32_t endstops_trigsteps[XYZ];
- //
- // Positions of stepper motors, in step units
- //
- static volatile int32_t count_position[NUM_AXIS];
- //
- // Current direction of stepper motors (+1 or -1)
- //
- static int8_t count_direction[NUM_AXIS];
- public:
- //
- // Constructor / initializer
- //
- Stepper() { };
- // Initialize stepper hardware
- static void init();
- // Interrupt Service Routines
- // The ISR scheduler
- static void isr();
- // The stepper pulse phase ISR
- static void stepper_pulse_phase_isr();
- // The stepper block processing phase ISR
- static uint32_t stepper_block_phase_isr();
- #if ENABLED(LIN_ADVANCE)
- // The Linear advance stepper ISR
- static uint32_t advance_isr();
- #endif
- // Check if the given block is busy or not - Must not be called from ISR contexts
- static bool is_block_busy(const block_t* const block);
- // Get the position of a stepper, in steps
- static int32_t position(const AxisEnum axis);
- // Report the positions of the steppers, in steps
- static void report_positions();
- // The stepper subsystem goes to sleep when it runs out of things to execute. Call this
- // to notify the subsystem that it is time to go to work.
- static void wake_up();
- // Quickly stop all steppers
- FORCE_INLINE static void quick_stop() { abort_current_block = true; }
- // The direction of a single motor
- FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); }
- // The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.
- FORCE_INLINE static bool axis_is_moving(const AxisEnum axis) { return TEST(axis_did_move, axis); }
- // The extruder associated to the last movement
- FORCE_INLINE static uint8_t movement_extruder() {
- return
- #if ENABLED(MIXING_EXTRUDER)
- 0
- #else
- last_moved_extruder
- #endif
- ;
- }
- // Handle a triggered endstop
- static void endstop_triggered(const AxisEnum axis);
- // Triggered position of an axis in steps
- static int32_t triggered_position(const AxisEnum axis);
- #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
- static void digitalPotWrite(const int16_t address, const int16_t value);
- static void digipot_current(const uint8_t driver, const int16_t current);
- #endif
- #if HAS_MICROSTEPS
- static void microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2);
- static void microstep_mode(const uint8_t driver, const uint8_t stepping);
- static void microstep_readings();
- #endif
- #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
- FORCE_INLINE static void set_homing_dual_axis(const bool state) { homing_dual_axis = state; }
- #endif
- #if ENABLED(X_DUAL_ENDSTOPS)
- FORCE_INLINE static void set_x_lock(const bool state) { locked_X_motor = state; }
- FORCE_INLINE static void set_x2_lock(const bool state) { locked_X2_motor = state; }
- #endif
- #if ENABLED(Y_DUAL_ENDSTOPS)
- FORCE_INLINE static void set_y_lock(const bool state) { locked_Y_motor = state; }
- FORCE_INLINE static void set_y2_lock(const bool state) { locked_Y2_motor = state; }
- #endif
- #if ENABLED(Z_DUAL_ENDSTOPS)
- FORCE_INLINE static void set_z_lock(const bool state) { locked_Z_motor = state; }
- FORCE_INLINE static void set_z2_lock(const bool state) { locked_Z2_motor = state; }
- #endif
- #if ENABLED(BABYSTEPPING)
- static void babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
- #endif
- #if HAS_MOTOR_CURRENT_PWM
- static void refresh_motor_power();
- #endif
- // Set the current position in steps
- inline static void set_position(const int32_t &a, const int32_t &b, const int32_t &c
- #if ENABLED(HANGPRINTER)
- , const int32_t &d
- #endif
- , const int32_t &e
- ) {
- planner.synchronize();
- const bool was_enabled = STEPPER_ISR_ENABLED();
- if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
- _set_position(a, b, c
- #if ENABLED(HANGPRINTER)
- , d
- #endif
- , e
- );
- if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
- inline static void set_position(const AxisEnum a, const int32_t &v) {
- planner.synchronize();
- const bool was_enabled = STEPPER_ISR_ENABLED();
- if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
- count_position[a] = v;
- if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
- private:
- // Set the current position in steps
- static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c
- #if ENABLED(HANGPRINTER)
- , const int32_t &d
- #endif
- , const int32_t &e
- );
- // Set direction bits for all steppers
- static void set_directions();
- // Allow reset_stepper_drivers to access private set_directions
- friend void reset_stepper_drivers();
- FORCE_INLINE static uint32_t calc_timer_interval(uint32_t step_rate, uint8_t scale, uint8_t* loops) {
- uint32_t timer;
- // Scale the frequency, as requested by the caller
- step_rate <<= scale;
- uint8_t multistep = 1;
- #if DISABLED(DISABLE_MULTI_STEPPING)
- // The stepping frequency limits for each multistepping rate
- static const uint32_t limit[] PROGMEM = {
- ( MAX_STEP_ISR_FREQUENCY_1X ),
- ( MAX_STEP_ISR_FREQUENCY_2X >> 1),
- ( MAX_STEP_ISR_FREQUENCY_4X >> 2),
- ( MAX_STEP_ISR_FREQUENCY_8X >> 3),
- ( MAX_STEP_ISR_FREQUENCY_16X >> 4),
- ( MAX_STEP_ISR_FREQUENCY_32X >> 5),
- ( MAX_STEP_ISR_FREQUENCY_64X >> 6),
- (MAX_STEP_ISR_FREQUENCY_128X >> 7)
- };
- // Select the proper multistepping
- uint8_t idx = 0;
- while (idx < 7 && step_rate > (uint32_t)pgm_read_dword(&limit[idx])) {
- step_rate >>= 1;
- multistep <<= 1;
- ++idx;
- };
- #else
- NOMORE(step_rate, uint32_t(MAX_STEP_ISR_FREQUENCY_1X));
- #endif
- *loops = multistep;
- constexpr uint32_t min_step_rate = F_CPU / 500000U;
- NOLESS(step_rate, min_step_rate);
- step_rate -= min_step_rate; // Correct for minimal speed
- if (step_rate >= (8 * 256)) { // higher step rate
- const uint8_t tmp_step_rate = (step_rate & 0x00FF);
- const uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0],
- gain = (uint16_t)pgm_read_word_near(table_address + 2);
- timer = MultiU16X8toH16(tmp_step_rate, gain);
- timer = (uint16_t)pgm_read_word_near(table_address) - timer;
- }
- else { // lower step rates
- uint16_t table_address = (uint16_t)&speed_lookuptable_slow[0][0];
- table_address += ((step_rate) >> 1) & 0xFFFC;
- timer = (uint16_t)pgm_read_word_near(table_address)
- - (((uint16_t)pgm_read_word_near(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3);
- }
- // (there is no need to limit the timer value here. All limits have been
- // applied above, and AVR is able to keep up at 30khz Stepping ISR rate)
- return timer;
- }
- #if ENABLED(S_CURVE_ACCELERATION)
- static void _calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av);
- static int32_t _eval_bezier_curve(const uint32_t curr_step);
- #endif
- #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
- static void digipot_init();
- #endif
- #if HAS_MICROSTEPS
- static void microstep_init();
- #endif
- };
- extern Stepper stepper;
- #endif // STEPPER_H
|