ubl_G29.cpp 72 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. //#define UBL_DEVEL_DEBUGGING
  25. #include "ubl.h"
  26. #include "Marlin.h"
  27. #include "hex_print_routines.h"
  28. #include "configuration_store.h"
  29. #include "ultralcd.h"
  30. #include "stepper.h"
  31. #include "planner.h"
  32. #include "parser.h"
  33. #include "serial.h"
  34. #include "bitmap_flags.h"
  35. #include <math.h>
  36. #include "least_squares_fit.h"
  37. #define UBL_G29_P31
  38. extern float destination[XYZE], current_position[XYZE];
  39. #if ENABLED(NEWPANEL)
  40. void lcd_return_to_status();
  41. void _lcd_ubl_output_map_lcd();
  42. #endif
  43. #define SIZE_OF_LITTLE_RAISE 1
  44. #define BIG_RAISE_NOT_NEEDED 0
  45. int unified_bed_leveling::g29_verbose_level,
  46. unified_bed_leveling::g29_phase_value,
  47. unified_bed_leveling::g29_repetition_cnt,
  48. unified_bed_leveling::g29_storage_slot = 0,
  49. unified_bed_leveling::g29_map_type;
  50. bool unified_bed_leveling::g29_c_flag,
  51. unified_bed_leveling::g29_x_flag,
  52. unified_bed_leveling::g29_y_flag;
  53. float unified_bed_leveling::g29_x_pos,
  54. unified_bed_leveling::g29_y_pos,
  55. unified_bed_leveling::g29_card_thickness = 0,
  56. unified_bed_leveling::g29_constant = 0;
  57. #if HAS_BED_PROBE
  58. int unified_bed_leveling::g29_grid_size;
  59. #endif
  60. /**
  61. * G29: Unified Bed Leveling by Roxy
  62. *
  63. * Parameters understood by this leveling system:
  64. *
  65. * A Activate Activate the Unified Bed Leveling system.
  66. *
  67. * B # Business Use the 'Business Card' mode of the Manual Probe subsystem with P2.
  68. * Note: A non-compressible Spark Gap feeler gauge is recommended over a business card.
  69. * In this mode of G29 P2, a business or index card is used as a shim that the nozzle can
  70. * grab onto as it is lowered. In principle, the nozzle-bed distance is the same when the
  71. * same resistance is felt in the shim. You can omit the numerical value on first invocation
  72. * of G29 P2 B to measure shim thickness. Subsequent use of 'B' will apply the previously-
  73. * measured thickness by default.
  74. *
  75. * C Continue G29 P1 C continues the generation of a partially-constructed Mesh without invalidating
  76. * previous measurements.
  77. *
  78. * C G29 P2 C tells the Manual Probe subsystem to not use the current nozzle
  79. * location in its search for the closest unmeasured Mesh Point. Instead, attempt to
  80. * start at one end of the uprobed points and Continue sequentially.
  81. *
  82. * G29 P3 C specifies the Constant for the fill. Otherwise, uses a "reasonable" value.
  83. *
  84. * C Current G29 Z C uses the Current location (instead of bed center or nearest edge).
  85. *
  86. * D Disable Disable the Unified Bed Leveling system.
  87. *
  88. * E Stow_probe Stow the probe after each sampled point.
  89. *
  90. * F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the
  91. * specified height, no correction is applied and natural printer kenimatics take over. If no
  92. * number is specified for the command, 10mm is assumed to be reasonable.
  93. *
  94. * H # Height With P2, 'H' specifies the Height to raise the nozzle after each manual probe of the bed.
  95. * If omitted, the nozzle will raise by Z_CLEARANCE_BETWEEN_PROBES.
  96. *
  97. * H # Offset With P4, 'H' specifies the Offset above the mesh height to place the nozzle.
  98. * If omitted, Z_CLEARANCE_BETWEEN_PROBES will be used.
  99. *
  100. * I # Invalidate Invalidate the specified number of Mesh Points near the given 'X' 'Y'. If X or Y are omitted,
  101. * the nozzle location is used. If no 'I' value is given, only the point nearest to the location
  102. * is invalidated. Use 'T' to produce a map afterward. This command is useful to invalidate a
  103. * portion of the Mesh so it can be adjusted using other UBL tools. When attempting to invalidate
  104. * an isolated bad mesh point, the 'T' option shows the nozzle position in the Mesh with (#). You
  105. * can move the nozzle around and use this feature to select the center of the area (or cell) to
  106. * invalidate.
  107. *
  108. * J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
  109. * Not specifying a grid size will invoke the 3-Point leveling function.
  110. *
  111. * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
  112. * command literally performs a diff between two Meshes.
  113. *
  114. * L Load Load Mesh from the previously activated location in the EEPROM.
  115. *
  116. * L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated
  117. * for subsequent Load and Store operations.
  118. *
  119. * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
  120. * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
  121. * each additional Phase that processes it.
  122. *
  123. * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
  124. * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
  125. * was turned on. Setting the entire Mesh to Zero is a special case that allows
  126. * a subsequent G or T leveling operation for backward compatibility.
  127. *
  128. * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
  129. * the Z-Probe. Usually the probe can't reach all areas that the nozzle can reach. For delta
  130. * printers only the areas where the probe and nozzle can both reach will be automatically probed.
  131. *
  132. * Unreachable points will be handled in Phase 2 and Phase 3.
  133. *
  134. * Use 'C' to leave the previous mesh intact and automatically probe needed points. This allows you
  135. * to invalidate parts of the Mesh but still use Automatic Probing.
  136. *
  137. * The 'X' and 'Y' parameters prioritize where to try and measure points. If omitted, the current
  138. * probe position is used.
  139. *
  140. * Use 'T' (Topology) to generate a report of mesh generation.
  141. *
  142. * P1 will suspend Mesh generation if the controller button is held down. Note that you may need
  143. * to press and hold the switch for several seconds if moves are underway.
  144. *
  145. * P2 Phase 2 Probe unreachable points.
  146. *
  147. * Use 'H' to set the height between Mesh points. If omitted, Z_CLEARANCE_BETWEEN_PROBES is used.
  148. * Smaller values will be quicker. Move the nozzle down till it barely touches the bed. Make sure the
  149. * nozzle is clean and unobstructed. Use caution and move slowly. This can damage your printer!
  150. * (Uses SIZE_OF_LITTLE_RAISE mm if the nozzle is moving less than BIG_RAISE_NOT_NEEDED mm.)
  151. *
  152. * The 'H' value can be negative if the Mesh dips in a large area. Press and hold the
  153. * controller button to terminate the current Phase 2 command. You can then re-issue "G29 P 2"
  154. * with an 'H' parameter more suitable for the area you're manually probing. Note that the command
  155. * tries to start in a corner of the bed where movement will be predictable. Override the distance
  156. * calculation location with the X and Y parameters. You can print a Mesh Map (G29 T) to see where
  157. * the mesh is invalidated and where the nozzle needs to move to complete the command. Use 'C' to
  158. * indicate that the search should be based on the current position.
  159. *
  160. * The 'B' parameter for this command is described above. It places the manual probe subsystem into
  161. * Business Card mode where the thickness of a business card is measured and then used to accurately
  162. * set the nozzle height in all manual probing for the duration of the command. A Business card can
  163. * be used, but you'll get better results with a flexible Shim that doesn't compress. This makes it
  164. * easier to produce similar amounts of force and get more accurate measurements. Google if you're
  165. * not sure how to use a shim.
  166. *
  167. * The 'T' (Map) parameter helps track Mesh building progress.
  168. *
  169. * NOTE: P2 requires an LCD controller!
  170. *
  171. * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths to
  172. * go down:
  173. *
  174. * - If a 'C' constant is specified, the closest invalid mesh points to the nozzle will be filled,
  175. * and a repeat count can then also be specified with 'R'.
  176. *
  177. * - Leaving out 'C' invokes Smart Fill, which scans the mesh from the edges inward looking for
  178. * invalid mesh points. Adjacent points are used to determine the bed slope. If the bed is sloped
  179. * upward from the invalid point, it takes the value of the nearest point. If sloped downward, it's
  180. * replaced by a value that puts all three points in a line. This version of G29 P3 is a quick, easy
  181. * and (usually) safe way to populate unprobed mesh regions before continuing to G26 Mesh Validation
  182. * Pattern. Note that this populates the mesh with unverified values. Pay attention and use caution.
  183. *
  184. * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assumes the existence of
  185. * an LCD Panel. It is possible to fine tune the mesh without an LCD Panel using
  186. * G42 and M421. See the UBL documentation for further details.
  187. *
  188. * Phase 4 is meant to be used with G26 Mesh Validation to fine tune the mesh by direct editing
  189. * of Mesh Points. Raise and lower points to fine tune the mesh until it gives consistently reliable
  190. * adhesion.
  191. *
  192. * P4 moves to the closest Mesh Point (and/or the given X Y), raises the nozzle above the mesh height
  193. * by the given 'H' offset (or default 0), and waits while the controller is used to adjust the nozzle
  194. * height. On click the displayed height is saved in the mesh.
  195. *
  196. * Start Phase 4 at a specific location with X and Y. Adjust a specific number of Mesh Points with
  197. * the 'R' (Repeat) parameter. (If 'R' is left out, the whole matrix is assumed.) This command can be
  198. * terminated early (e.g., after editing the area of interest) by pressing and holding the encoder button.
  199. *
  200. * The general form is G29 P4 [R points] [X position] [Y position]
  201. *
  202. * The H [offset] parameter is useful if a shim is used to fine-tune the mesh. For a 0.4mm shim the
  203. * command would be G29 P4 H0.4. The nozzle is moved to the shim height, you adjust height to the shim,
  204. * and on click the height minus the shim thickness will be saved in the mesh.
  205. *
  206. * !!Use with caution, as a very poor mesh could cause the nozzle to crash into the bed!!
  207. *
  208. * NOTE: P4 is not available unless you have LCD support enabled!
  209. *
  210. * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
  211. * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
  212. * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
  213. * execute a G29 P6 C <mean height>.
  214. *
  215. * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
  216. * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
  217. * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
  218. * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
  219. * 0.000 at the Z Home location.
  220. *
  221. * Q Test Load specified Test Pattern to assist in checking correct operation of system. This
  222. * command is not anticipated to be of much value to the typical user. It is intended
  223. * for developers to help them verify correct operation of the Unified Bed Leveling System.
  224. *
  225. * R # Repeat Repeat this command the specified number of times. If no number is specified the
  226. * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
  227. *
  228. * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
  229. * current state of the Unified Bed Leveling system in the EEPROM.
  230. *
  231. * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
  232. * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
  233. * extend to a limit related to the available EEPROM storage.
  234. *
  235. * S -1 Store Print the current Mesh as G-code that can be used to restore the mesh anytime.
  236. *
  237. * T Topology Display the Mesh Map Topology.
  238. * 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands.
  239. * This option works with all Phase commands (e.g., G29 P4 R 5 T X 50 Y100 C -.1 O)
  240. * This parameter can also specify a Map Type. T0 (the default) is user-readable. T1 can
  241. * is suitable to paste into a spreadsheet for a 3D graph of the mesh.
  242. *
  243. * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
  244. * Only used for G29 P1 T U. This speeds up the probing of the edge of the bed. Useful
  245. * when the entire bed doesn't need to be probed because it will be adjusted.
  246. *
  247. * V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0)
  248. *
  249. * W What? Display valuable Unified Bed Leveling System data.
  250. *
  251. * X # X Location for this command
  252. *
  253. * Y # Y Location for this command
  254. *
  255. *
  256. * Release Notes:
  257. * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
  258. * kinds of problems. Enabling EEPROM Storage is required.
  259. *
  260. * When you do a G28 and G29 P1 to automatically build your first mesh, you are going to notice that
  261. * UBL probes points increasingly further from the starting location. (The starting location defaults
  262. * to the center of the bed.) In contrast, ABL and MBL follow a zigzag pattern. The spiral pattern is
  263. * especially better for Delta printers, since it populates the center of the mesh first, allowing for
  264. * a quicker test print to verify settings. You don't need to populate the entire mesh to use it.
  265. * After all, you don't want to spend a lot of time generating a mesh only to realize the resolution
  266. * or zprobe_zoffset are incorrect. Mesh-generation gathers points starting closest to the nozzle unless
  267. * an (X,Y) coordinate pair is given.
  268. *
  269. * Unified Bed Leveling uses a lot of EEPROM storage to hold its data, and it takes some effort to get
  270. * the mesh just right. To prevent this valuable data from being destroyed as the EEPROM structure
  271. * evolves, UBL stores all mesh data at the end of EEPROM.
  272. *
  273. * UBL is founded on Edward Patel's Mesh Bed Leveling code. A big 'Thanks!' to him and the creators of
  274. * 3-Point and Grid Based leveling. Combining their contributions we now have the functionality and
  275. * features of all three systems combined.
  276. */
  277. void unified_bed_leveling::G29() {
  278. if (g29_parameter_parsing()) return; // Abort on parameter error
  279. const int8_t p_val = parser.intval('P', -1);
  280. const bool may_move = p_val == 1 || p_val == 2 || p_val == 4 || parser.seen('J');
  281. // Check for commands that require the printer to be homed
  282. if (may_move) {
  283. #if ENABLED(DUAL_X_CARRIAGE)
  284. if (active_extruder != 0) tool_change(0);
  285. #endif
  286. if (axis_unhomed_error()) home_all_axes();
  287. }
  288. // Invalidate Mesh Points. This command is a little bit asymmetrical because
  289. // it directly specifies the repetition count and does not use the 'R' parameter.
  290. if (parser.seen('I')) {
  291. uint8_t cnt = 0;
  292. g29_repetition_cnt = parser.has_value() ? parser.value_int() : 1;
  293. if (g29_repetition_cnt >= GRID_MAX_POINTS) {
  294. set_all_mesh_points_to_value(NAN);
  295. }
  296. else {
  297. while (g29_repetition_cnt--) {
  298. if (cnt > 20) { cnt = 0; idle(); }
  299. const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL);
  300. if (location.x_index < 0) {
  301. // No more REACHABLE mesh points to invalidate, so we ASSUME the user
  302. // meant to invalidate the ENTIRE mesh, which cannot be done with
  303. // find_closest_mesh_point loop which only returns REACHABLE points.
  304. set_all_mesh_points_to_value(NAN);
  305. SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
  306. break; // No more invalid Mesh Points to populate
  307. }
  308. z_values[location.x_index][location.y_index] = NAN;
  309. cnt++;
  310. }
  311. }
  312. SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
  313. }
  314. if (parser.seen('Q')) {
  315. const int test_pattern = parser.has_value() ? parser.value_int() : -99;
  316. if (!WITHIN(test_pattern, -1, 2)) {
  317. SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (-1 to 2)\n");
  318. return;
  319. }
  320. SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
  321. switch (test_pattern) {
  322. case -1:
  323. g29_eeprom_dump();
  324. break;
  325. case 0:
  326. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
  327. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
  328. const float p1 = 0.5f * (GRID_MAX_POINTS_X) - x,
  329. p2 = 0.5f * (GRID_MAX_POINTS_Y) - y;
  330. z_values[x][y] += 2.0f * HYPOT(p1, p2);
  331. }
  332. }
  333. break;
  334. case 1:
  335. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
  336. z_values[x][x] += 9.999f;
  337. z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999f; // We want the altered line several mesh points thick
  338. }
  339. break;
  340. case 2:
  341. // Allow the user to specify the height because 10mm is a little extreme in some cases.
  342. for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
  343. for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
  344. z_values[x][y] += parser.seen('C') ? g29_constant : 9.99f;
  345. break;
  346. }
  347. }
  348. #if HAS_BED_PROBE
  349. if (parser.seen('J')) {
  350. if (g29_grid_size) { // if not 0 it is a normal n x n grid being probed
  351. save_ubl_active_state_and_disable();
  352. tilt_mesh_based_on_probed_grid(false /* false says to do normal grid probing */ );
  353. restore_ubl_active_state_and_leave();
  354. }
  355. else { // grid_size == 0 : A 3-Point leveling has been requested
  356. save_ubl_active_state_and_disable();
  357. tilt_mesh_based_on_probed_grid(true /* true says to do 3-Point leveling */ );
  358. restore_ubl_active_state_and_leave();
  359. }
  360. do_blocking_move_to_xy(0.5f * (MESH_MAX_X - (MESH_MIN_X)), 0.5f * (MESH_MAX_Y - (MESH_MIN_Y)));
  361. report_current_position();
  362. }
  363. #endif // HAS_BED_PROBE
  364. if (parser.seen('P')) {
  365. if (WITHIN(g29_phase_value, 0, 1) && storage_slot == -1) {
  366. storage_slot = 0;
  367. SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected.");
  368. }
  369. switch (g29_phase_value) {
  370. case 0:
  371. //
  372. // Zero Mesh Data
  373. //
  374. reset();
  375. SERIAL_PROTOCOLLNPGM("Mesh zeroed.");
  376. break;
  377. #if HAS_BED_PROBE
  378. case 1:
  379. //
  380. // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
  381. //
  382. if (!parser.seen('C')) {
  383. invalidate();
  384. SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.");
  385. }
  386. if (g29_verbose_level > 1) {
  387. SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", g29_x_pos);
  388. SERIAL_PROTOCOLCHAR(',');
  389. SERIAL_PROTOCOL(g29_y_pos);
  390. SERIAL_PROTOCOLLNPGM(").\n");
  391. }
  392. probe_entire_mesh(g29_x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, g29_y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
  393. parser.seen('T'), parser.seen('E'), parser.seen('U'));
  394. report_current_position();
  395. break;
  396. #endif // HAS_BED_PROBE
  397. case 2: {
  398. #if ENABLED(NEWPANEL)
  399. //
  400. // Manually Probe Mesh in areas that can't be reached by the probe
  401. //
  402. SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.");
  403. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  404. if (parser.seen('C') && !g29_x_flag && !g29_y_flag) {
  405. /**
  406. * Use a good default location for the path.
  407. * The flipped > and < operators in these comparisons is intentional.
  408. * It should cause the probed points to follow a nice path on Cartesian printers.
  409. * It may make sense to have Delta printers default to the center of the bed.
  410. * Until that is decided, this can be forced with the X and Y parameters.
  411. */
  412. #if IS_KINEMATIC
  413. g29_x_pos = X_HOME_POS;
  414. g29_y_pos = Y_HOME_POS;
  415. #else // cartesian
  416. g29_x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_BED_SIZE : 0;
  417. g29_y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_BED_SIZE : 0;
  418. #endif
  419. }
  420. if (parser.seen('B')) {
  421. g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness((float) Z_CLEARANCE_BETWEEN_PROBES);
  422. if (ABS(g29_card_thickness) > 1.5f) {
  423. SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.");
  424. return;
  425. }
  426. }
  427. if (!position_is_reachable(g29_x_pos, g29_y_pos)) {
  428. SERIAL_PROTOCOLLNPGM("XY outside printable radius.");
  429. return;
  430. }
  431. const float height = parser.floatval('H', Z_CLEARANCE_BETWEEN_PROBES);
  432. manually_probe_remaining_mesh(g29_x_pos, g29_y_pos, height, g29_card_thickness, parser.seen('T'));
  433. SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
  434. report_current_position();
  435. #else
  436. SERIAL_PROTOCOLLNPGM("?P2 is only available when an LCD is present.");
  437. return;
  438. #endif
  439. } break;
  440. case 3: {
  441. /**
  442. * Populate invalid mesh areas. Proceed with caution.
  443. * Two choices are available:
  444. * - Specify a constant with the 'C' parameter.
  445. * - Allow 'G29 P3' to choose a 'reasonable' constant.
  446. */
  447. if (g29_c_flag) {
  448. if (g29_repetition_cnt >= GRID_MAX_POINTS) {
  449. set_all_mesh_points_to_value(g29_constant);
  450. }
  451. else {
  452. while (g29_repetition_cnt--) { // this only populates reachable mesh points near
  453. const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL);
  454. if (location.x_index < 0) {
  455. // No more REACHABLE INVALID mesh points to populate, so we ASSUME
  456. // user meant to populate ALL INVALID mesh points to value
  457. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  458. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  459. if (isnan(z_values[x][y]))
  460. z_values[x][y] = g29_constant;
  461. break; // No more invalid Mesh Points to populate
  462. }
  463. z_values[location.x_index][location.y_index] = g29_constant;
  464. }
  465. }
  466. }
  467. else {
  468. const float cvf = parser.value_float();
  469. switch ((int)truncf(cvf * 10.0f) - 30) { // 3.1 -> 1
  470. #if ENABLED(UBL_G29_P31)
  471. case 1: {
  472. // P3.1 use least squares fit to fill missing mesh values
  473. // P3.10 zero weighting for distance, all grid points equal, best fit tilted plane
  474. // P3.11 10X weighting for nearest grid points versus farthest grid points
  475. // P3.12 100X distance weighting
  476. // P3.13 1000X distance weighting, approaches simple average of nearest points
  477. const float weight_power = (cvf - 3.10f) * 100.0f, // 3.12345 -> 2.345
  478. weight_factor = weight_power ? POW(10.0f, weight_power) : 0;
  479. smart_fill_wlsf(weight_factor);
  480. }
  481. break;
  482. #endif
  483. case 0: // P3 or P3.0
  484. default: // and anything P3.x that's not P3.1
  485. smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
  486. break;
  487. }
  488. }
  489. break;
  490. }
  491. case 4: // Fine Tune (i.e., Edit) the Mesh
  492. #if ENABLED(NEWPANEL)
  493. fine_tune_mesh(g29_x_pos, g29_y_pos, parser.seen('T'));
  494. #else
  495. SERIAL_PROTOCOLLNPGM("?P4 is only available when an LCD is present.");
  496. return;
  497. #endif
  498. break;
  499. case 5: adjust_mesh_to_mean(g29_c_flag, g29_constant); break;
  500. case 6: shift_mesh_height(); break;
  501. }
  502. }
  503. //
  504. // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  505. // good to have the extra information. Soon... we prune this to just a few items
  506. //
  507. if (parser.seen('W')) g29_what_command();
  508. //
  509. // When we are fully debugged, this may go away. But there are some valid
  510. // use cases for the users. So we can wait and see what to do with it.
  511. //
  512. if (parser.seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
  513. g29_compare_current_mesh_to_stored_mesh();
  514. //
  515. // Load a Mesh from the EEPROM
  516. //
  517. if (parser.seen('L')) { // Load Current Mesh Data
  518. g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
  519. int16_t a = settings.calc_num_meshes();
  520. if (!a) {
  521. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  522. return;
  523. }
  524. if (!WITHIN(g29_storage_slot, 0, a - 1)) {
  525. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  526. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  527. return;
  528. }
  529. settings.load_mesh(g29_storage_slot);
  530. storage_slot = g29_storage_slot;
  531. SERIAL_PROTOCOLLNPGM("Done.");
  532. }
  533. //
  534. // Store a Mesh in the EEPROM
  535. //
  536. if (parser.seen('S')) { // Store (or Save) Current Mesh Data
  537. g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
  538. if (g29_storage_slot == -1) // Special case, the user wants to 'Export' the mesh to the
  539. return report_current_mesh(); // host program to be saved on the user's computer
  540. int16_t a = settings.calc_num_meshes();
  541. if (!a) {
  542. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  543. goto LEAVE;
  544. }
  545. if (!WITHIN(g29_storage_slot, 0, a - 1)) {
  546. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  547. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  548. goto LEAVE;
  549. }
  550. settings.store_mesh(g29_storage_slot);
  551. storage_slot = g29_storage_slot;
  552. SERIAL_PROTOCOLLNPGM("Done.");
  553. }
  554. if (parser.seen('T'))
  555. display_map(g29_map_type);
  556. LEAVE:
  557. #if ENABLED(NEWPANEL)
  558. lcd_reset_alert_level();
  559. lcd_quick_feedback(true);
  560. lcd_reset_status();
  561. lcd_external_control = false;
  562. #endif
  563. return;
  564. }
  565. void unified_bed_leveling::adjust_mesh_to_mean(const bool cflag, const float value) {
  566. float sum = 0;
  567. int n = 0;
  568. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  569. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  570. if (!isnan(z_values[x][y])) {
  571. sum += z_values[x][y];
  572. n++;
  573. }
  574. const float mean = sum / n;
  575. //
  576. // Sum the squares of difference from mean
  577. //
  578. float sum_of_diff_squared = 0;
  579. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  580. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  581. if (!isnan(z_values[x][y]))
  582. sum_of_diff_squared += sq(z_values[x][y] - mean);
  583. SERIAL_ECHOLNPAIR("# of samples: ", n);
  584. SERIAL_ECHOPGM("Mean Mesh Height: ");
  585. SERIAL_ECHO_F(mean, 6);
  586. SERIAL_EOL();
  587. const float sigma = SQRT(sum_of_diff_squared / (n + 1));
  588. SERIAL_ECHOPGM("Standard Deviation: ");
  589. SERIAL_ECHO_F(sigma, 6);
  590. SERIAL_EOL();
  591. if (cflag)
  592. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  593. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  594. if (!isnan(z_values[x][y]))
  595. z_values[x][y] -= mean + value;
  596. }
  597. void unified_bed_leveling::shift_mesh_height() {
  598. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  599. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  600. if (!isnan(z_values[x][y]))
  601. z_values[x][y] += g29_constant;
  602. }
  603. #if ENABLED(NEWPANEL)
  604. typedef void (*clickFunc_t)();
  605. bool click_and_hold(const clickFunc_t func=NULL) {
  606. if (is_lcd_clicked()) {
  607. lcd_quick_feedback(false); // Do NOT clear button status! If cleared, the code
  608. // code can not look for a 'click and hold'
  609. const millis_t nxt = millis() + 1500UL;
  610. while (is_lcd_clicked()) { // Loop while the encoder is pressed. Uses hardware flag!
  611. idle(); // idle, of course
  612. if (ELAPSED(millis(), nxt)) { // After 1.5 seconds
  613. lcd_quick_feedback(true);
  614. if (func) (*func)();
  615. wait_for_release();
  616. safe_delay(50); // Debounce the Encoder wheel
  617. return true;
  618. }
  619. }
  620. }
  621. safe_delay(15);
  622. return false;
  623. }
  624. #endif // NEWPANEL
  625. #if HAS_BED_PROBE
  626. /**
  627. * Probe all invalidated locations of the mesh that can be reached by the probe.
  628. * This attempts to fill in locations closest to the nozzle's start location first.
  629. */
  630. void unified_bed_leveling::probe_entire_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) {
  631. mesh_index_pair location;
  632. #if ENABLED(NEWPANEL)
  633. lcd_external_control = true;
  634. #endif
  635. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  636. DEPLOY_PROBE();
  637. uint16_t count = GRID_MAX_POINTS;
  638. do {
  639. if (do_ubl_mesh_map) display_map(g29_map_type);
  640. #if ENABLED(NEWPANEL)
  641. if (is_lcd_clicked()) {
  642. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
  643. lcd_quick_feedback(false);
  644. STOW_PROBE();
  645. while (is_lcd_clicked()) idle();
  646. lcd_external_control = false;
  647. restore_ubl_active_state_and_leave();
  648. lcd_quick_feedback(true);
  649. safe_delay(50); // Debounce the Encoder wheel
  650. return;
  651. }
  652. #endif
  653. if (do_furthest)
  654. location = find_furthest_invalid_mesh_point();
  655. else
  656. location = find_closest_mesh_point_of_type(INVALID, rx, ry, USE_PROBE_AS_REFERENCE, NULL);
  657. if (location.x_index >= 0) { // mesh point found and is reachable by probe
  658. const float rawx = mesh_index_to_xpos(location.x_index),
  659. rawy = mesh_index_to_ypos(location.y_index);
  660. const float measured_z = probe_pt(rawx, rawy, stow_probe ? PROBE_PT_STOW : PROBE_PT_RAISE, g29_verbose_level); // TODO: Needs error handling
  661. z_values[location.x_index][location.y_index] = measured_z;
  662. }
  663. SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
  664. } while (location.x_index >= 0 && --count);
  665. STOW_PROBE();
  666. #ifdef Z_AFTER_PROBING
  667. move_z_after_probing();
  668. #endif
  669. restore_ubl_active_state_and_leave();
  670. do_blocking_move_to_xy(
  671. constrain(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), MESH_MIN_X, MESH_MAX_X),
  672. constrain(ry - (Y_PROBE_OFFSET_FROM_EXTRUDER), MESH_MIN_Y, MESH_MAX_Y)
  673. );
  674. }
  675. #endif // HAS_BED_PROBE
  676. #if ENABLED(NEWPANEL)
  677. void unified_bed_leveling::move_z_with_encoder(const float &multiplier) {
  678. wait_for_release();
  679. while (!is_lcd_clicked()) {
  680. idle();
  681. reset_stepper_timeout(); // Keep steppers powered
  682. if (encoder_diff) {
  683. do_blocking_move_to_z(current_position[Z_AXIS] + float(encoder_diff) * multiplier);
  684. encoder_diff = 0;
  685. }
  686. }
  687. }
  688. float unified_bed_leveling::measure_point_with_encoder() {
  689. KEEPALIVE_STATE(PAUSED_FOR_USER);
  690. move_z_with_encoder(0.01f);
  691. KEEPALIVE_STATE(IN_HANDLER);
  692. return current_position[Z_AXIS];
  693. }
  694. static void echo_and_take_a_measurement() { SERIAL_PROTOCOLLNPGM(" and take a measurement."); }
  695. float unified_bed_leveling::measure_business_card_thickness(float in_height) {
  696. lcd_external_control = true;
  697. save_ubl_active_state_and_disable(); // Disable bed level correction for probing
  698. do_blocking_move_to(0.5f * (MESH_MAX_X - (MESH_MIN_X)), 0.5f * (MESH_MAX_Y - (MESH_MIN_Y)), in_height);
  699. //, MIN(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) * 0.5f);
  700. planner.synchronize();
  701. SERIAL_PROTOCOLPGM("Place shim under nozzle");
  702. LCD_MESSAGEPGM(MSG_UBL_BC_INSERT);
  703. lcd_return_to_status();
  704. echo_and_take_a_measurement();
  705. const float z1 = measure_point_with_encoder();
  706. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  707. planner.synchronize();
  708. SERIAL_PROTOCOLPGM("Remove shim");
  709. LCD_MESSAGEPGM(MSG_UBL_BC_REMOVE);
  710. echo_and_take_a_measurement();
  711. const float z2 = measure_point_with_encoder();
  712. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
  713. const float thickness = ABS(z1 - z2);
  714. if (g29_verbose_level > 1) {
  715. SERIAL_PROTOCOLPGM("Business Card is ");
  716. SERIAL_PROTOCOL_F(thickness, 4);
  717. SERIAL_PROTOCOLLNPGM("mm thick.");
  718. }
  719. lcd_external_control = false;
  720. restore_ubl_active_state_and_leave();
  721. return thickness;
  722. }
  723. void abort_manual_probe_remaining_mesh() {
  724. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
  725. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  726. lcd_external_control = false;
  727. KEEPALIVE_STATE(IN_HANDLER);
  728. lcd_quick_feedback(true);
  729. ubl.restore_ubl_active_state_and_leave();
  730. }
  731. void unified_bed_leveling::manually_probe_remaining_mesh(const float &rx, const float &ry, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) {
  732. lcd_external_control = true;
  733. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  734. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_clearance);
  735. lcd_return_to_status();
  736. mesh_index_pair location;
  737. do {
  738. location = find_closest_mesh_point_of_type(INVALID, rx, ry, USE_NOZZLE_AS_REFERENCE, NULL);
  739. // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
  740. if (location.x_index < 0 && location.y_index < 0) continue;
  741. const float xProbe = mesh_index_to_xpos(location.x_index),
  742. yProbe = mesh_index_to_ypos(location.y_index);
  743. if (!position_is_reachable(xProbe, yProbe)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
  744. LCD_MESSAGEPGM(MSG_UBL_MOVING_TO_NEXT);
  745. do_blocking_move_to(xProbe, yProbe, Z_CLEARANCE_BETWEEN_PROBES);
  746. do_blocking_move_to_z(z_clearance);
  747. KEEPALIVE_STATE(PAUSED_FOR_USER);
  748. lcd_external_control = true;
  749. if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
  750. serialprintPGM(parser.seen('B') ? PSTR(MSG_UBL_BC_INSERT) : PSTR(MSG_UBL_BC_INSERT2));
  751. const float z_step = 0.01f; // existing behavior: 0.01mm per click, occasionally step
  752. //const float z_step = planner.steps_to_mm[Z_AXIS]; // approx one step each click
  753. move_z_with_encoder(z_step);
  754. if (click_and_hold()) {
  755. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
  756. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  757. lcd_external_control = false;
  758. KEEPALIVE_STATE(IN_HANDLER);
  759. restore_ubl_active_state_and_leave();
  760. return;
  761. }
  762. z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - thick;
  763. if (g29_verbose_level > 2) {
  764. SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
  765. SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
  766. SERIAL_EOL();
  767. }
  768. SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
  769. } while (location.x_index >= 0 && location.y_index >= 0);
  770. if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
  771. restore_ubl_active_state_and_leave();
  772. KEEPALIVE_STATE(IN_HANDLER);
  773. do_blocking_move_to(rx, ry, Z_CLEARANCE_DEPLOY_PROBE);
  774. }
  775. #endif // NEWPANEL
  776. bool unified_bed_leveling::g29_parameter_parsing() {
  777. bool err_flag = false;
  778. #if ENABLED(NEWPANEL)
  779. LCD_MESSAGEPGM(MSG_UBL_DOING_G29);
  780. lcd_quick_feedback(true);
  781. #endif
  782. g29_constant = 0;
  783. g29_repetition_cnt = 0;
  784. g29_x_flag = parser.seenval('X');
  785. g29_x_pos = g29_x_flag ? parser.value_float() : current_position[X_AXIS];
  786. g29_y_flag = parser.seenval('Y');
  787. g29_y_pos = g29_y_flag ? parser.value_float() : current_position[Y_AXIS];
  788. if (parser.seen('R')) {
  789. g29_repetition_cnt = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS;
  790. NOMORE(g29_repetition_cnt, GRID_MAX_POINTS);
  791. if (g29_repetition_cnt < 1) {
  792. SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
  793. return UBL_ERR;
  794. }
  795. }
  796. g29_verbose_level = parser.seen('V') ? parser.value_int() : 0;
  797. if (!WITHIN(g29_verbose_level, 0, 4)) {
  798. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).\n");
  799. err_flag = true;
  800. }
  801. if (parser.seen('P')) {
  802. const int pv = parser.value_int();
  803. #if !HAS_BED_PROBE
  804. if (pv == 1) {
  805. SERIAL_PROTOCOLLNPGM("G29 P1 requires a probe.\n");
  806. err_flag = true;
  807. }
  808. else
  809. #endif
  810. {
  811. g29_phase_value = pv;
  812. if (!WITHIN(g29_phase_value, 0, 6)) {
  813. SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n");
  814. err_flag = true;
  815. }
  816. }
  817. }
  818. if (parser.seen('J')) {
  819. #if HAS_BED_PROBE
  820. g29_grid_size = parser.has_value() ? parser.value_int() : 0;
  821. if (g29_grid_size && !WITHIN(g29_grid_size, 2, 9)) {
  822. SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n");
  823. err_flag = true;
  824. }
  825. #else
  826. SERIAL_PROTOCOLLNPGM("G29 J action requires a probe.\n");
  827. err_flag = true;
  828. #endif
  829. }
  830. if (g29_x_flag != g29_y_flag) {
  831. SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
  832. err_flag = true;
  833. }
  834. // If X or Y are not valid, use center of the bed values
  835. if (!WITHIN(g29_x_pos, X_MIN_BED, X_MAX_BED)) g29_x_pos = X_CENTER;
  836. if (!WITHIN(g29_y_pos, Y_MIN_BED, Y_MAX_BED)) g29_y_pos = Y_CENTER;
  837. if (err_flag) return UBL_ERR;
  838. /**
  839. * Activate or deactivate UBL
  840. * Note: UBL's G29 restores the state set here when done.
  841. * Leveling is being enabled here with old data, possibly
  842. * none. Error handling should disable for safety...
  843. */
  844. if (parser.seen('A')) {
  845. if (parser.seen('D')) {
  846. SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
  847. return UBL_ERR;
  848. }
  849. set_bed_leveling_enabled(true);
  850. report_state();
  851. }
  852. else if (parser.seen('D')) {
  853. set_bed_leveling_enabled(false);
  854. report_state();
  855. }
  856. // Set global 'C' flag and its value
  857. if ((g29_c_flag = parser.seen('C')))
  858. g29_constant = parser.value_float();
  859. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  860. if (parser.seenval('F')) {
  861. const float fh = parser.value_float();
  862. if (!WITHIN(fh, 0, 100)) {
  863. SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
  864. return UBL_ERR;
  865. }
  866. set_z_fade_height(fh);
  867. }
  868. #endif
  869. g29_map_type = parser.intval('T');
  870. if (!WITHIN(g29_map_type, 0, 2)) {
  871. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  872. return UBL_ERR;
  873. }
  874. return UBL_OK;
  875. }
  876. static uint8_t ubl_state_at_invocation = 0;
  877. #ifdef UBL_DEVEL_DEBUGGING
  878. static uint8_t ubl_state_recursion_chk = 0;
  879. #endif
  880. void unified_bed_leveling::save_ubl_active_state_and_disable() {
  881. #ifdef UBL_DEVEL_DEBUGGING
  882. ubl_state_recursion_chk++;
  883. if (ubl_state_recursion_chk != 1) {
  884. SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
  885. #if ENABLED(NEWPANEL)
  886. LCD_MESSAGEPGM(MSG_UBL_SAVE_ERROR);
  887. lcd_quick_feedback(true);
  888. #endif
  889. return;
  890. }
  891. #endif
  892. ubl_state_at_invocation = planner.leveling_active;
  893. set_bed_leveling_enabled(false);
  894. }
  895. void unified_bed_leveling::restore_ubl_active_state_and_leave() {
  896. #ifdef UBL_DEVEL_DEBUGGING
  897. if (--ubl_state_recursion_chk) {
  898. SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
  899. #if ENABLED(NEWPANEL)
  900. LCD_MESSAGEPGM(MSG_UBL_RESTORE_ERROR);
  901. lcd_quick_feedback(true);
  902. #endif
  903. return;
  904. }
  905. #endif
  906. set_bed_leveling_enabled(ubl_state_at_invocation);
  907. }
  908. /**
  909. * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  910. * good to have the extra information. Soon... we prune this to just a few items
  911. */
  912. void unified_bed_leveling::g29_what_command() {
  913. report_state();
  914. if (storage_slot == -1)
  915. SERIAL_PROTOCOLPGM("No Mesh Loaded.");
  916. else {
  917. SERIAL_PROTOCOLPAIR("Mesh ", storage_slot);
  918. SERIAL_PROTOCOLPGM(" Loaded.");
  919. }
  920. SERIAL_EOL();
  921. safe_delay(50);
  922. SERIAL_PROTOCOLLNPAIR("UBL object count: ", (int)ubl_cnt);
  923. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  924. SERIAL_PROTOCOLPGM("planner.z_fade_height : ");
  925. SERIAL_PROTOCOL_F(planner.z_fade_height, 4);
  926. SERIAL_EOL();
  927. #endif
  928. adjust_mesh_to_mean(g29_c_flag, g29_constant);
  929. #if HAS_BED_PROBE
  930. SERIAL_PROTOCOLPGM("zprobe_zoffset: ");
  931. SERIAL_PROTOCOL_F(zprobe_zoffset, 7);
  932. SERIAL_EOL();
  933. #endif
  934. SERIAL_ECHOLNPAIR("MESH_MIN_X " STRINGIFY(MESH_MIN_X) "=", MESH_MIN_X);
  935. safe_delay(50);
  936. SERIAL_ECHOLNPAIR("MESH_MIN_Y " STRINGIFY(MESH_MIN_Y) "=", MESH_MIN_Y);
  937. safe_delay(50);
  938. SERIAL_ECHOLNPAIR("MESH_MAX_X " STRINGIFY(MESH_MAX_X) "=", MESH_MAX_X);
  939. safe_delay(50);
  940. SERIAL_ECHOLNPAIR("MESH_MAX_Y " STRINGIFY(MESH_MAX_Y) "=", MESH_MAX_Y);
  941. safe_delay(50);
  942. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
  943. safe_delay(50);
  944. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
  945. safe_delay(50);
  946. SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
  947. SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST);
  948. safe_delay(50);
  949. SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
  950. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  951. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(mesh_index_to_xpos(i)), 3);
  952. SERIAL_PROTOCOLPGM(" ");
  953. safe_delay(25);
  954. }
  955. SERIAL_EOL();
  956. SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
  957. for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
  958. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(mesh_index_to_ypos(i)), 3);
  959. SERIAL_PROTOCOLPGM(" ");
  960. safe_delay(25);
  961. }
  962. SERIAL_EOL();
  963. #if HAS_KILL
  964. SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
  965. SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
  966. #endif
  967. SERIAL_EOL();
  968. safe_delay(50);
  969. #ifdef UBL_DEVEL_DEBUGGING
  970. SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
  971. SERIAL_EOL();
  972. SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
  973. SERIAL_EOL();
  974. safe_delay(50);
  975. SERIAL_PROTOCOLPAIR("Meshes go from ", hex_address((void*)settings.meshes_start_index()));
  976. SERIAL_PROTOCOLLNPAIR(" to ", hex_address((void*)settings.meshes_end_index()));
  977. safe_delay(50);
  978. SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
  979. SERIAL_EOL();
  980. SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
  981. SERIAL_EOL();
  982. safe_delay(25);
  983. SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.meshes_end_index() - settings.meshes_start_index())));
  984. safe_delay(50);
  985. SERIAL_PROTOCOLPAIR("EEPROM can hold ", settings.calc_num_meshes());
  986. SERIAL_PROTOCOLLNPGM(" meshes.\n");
  987. safe_delay(25);
  988. #endif // UBL_DEVEL_DEBUGGING
  989. if (!sanity_check()) {
  990. echo_name();
  991. SERIAL_PROTOCOLLNPGM(" sanity checks passed.");
  992. }
  993. }
  994. /**
  995. * When we are fully debugged, the EEPROM dump command will get deleted also. But
  996. * right now, it is good to have the extra information. Soon... we prune this.
  997. */
  998. void unified_bed_leveling::g29_eeprom_dump() {
  999. unsigned char cccc;
  1000. unsigned int kkkk; // Needs to be of unspecfied size to compile clean on all platforms
  1001. SERIAL_ECHO_START();
  1002. SERIAL_ECHOLNPGM("EEPROM Dump:");
  1003. for (uint16_t i = 0; i <= E2END; i += 16) {
  1004. if (!(i & 0x3)) idle();
  1005. print_hex_word(i);
  1006. SERIAL_ECHOPGM(": ");
  1007. for (uint16_t j = 0; j < 16; j++) {
  1008. kkkk = i + j;
  1009. eeprom_read_block(&cccc, (const void *)kkkk, sizeof(unsigned char));
  1010. print_hex_byte(cccc);
  1011. SERIAL_ECHO(' ');
  1012. }
  1013. SERIAL_EOL();
  1014. }
  1015. SERIAL_EOL();
  1016. }
  1017. /**
  1018. * When we are fully debugged, this may go away. But there are some valid
  1019. * use cases for the users. So we can wait and see what to do with it.
  1020. */
  1021. void unified_bed_leveling::g29_compare_current_mesh_to_stored_mesh() {
  1022. int16_t a = settings.calc_num_meshes();
  1023. if (!a) {
  1024. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  1025. return;
  1026. }
  1027. if (!parser.has_value()) {
  1028. SERIAL_PROTOCOLLNPGM("?Storage slot # required.");
  1029. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  1030. return;
  1031. }
  1032. g29_storage_slot = parser.value_int();
  1033. if (!WITHIN(g29_storage_slot, 0, a - 1)) {
  1034. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  1035. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  1036. return;
  1037. }
  1038. float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  1039. settings.load_mesh(g29_storage_slot, &tmp_z_values);
  1040. SERIAL_PROTOCOLPAIR("Subtracting mesh in slot ", g29_storage_slot);
  1041. SERIAL_PROTOCOLLNPGM(" from current mesh.");
  1042. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  1043. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  1044. z_values[x][y] -= tmp_z_values[x][y];
  1045. }
  1046. mesh_index_pair unified_bed_leveling::find_furthest_invalid_mesh_point() {
  1047. bool found_a_NAN = false, found_a_real = false;
  1048. mesh_index_pair out_mesh;
  1049. out_mesh.x_index = out_mesh.y_index = -1;
  1050. out_mesh.distance = -99999.99f;
  1051. for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1052. for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1053. if (isnan(z_values[i][j])) { // Check to see if this location holds an invalid mesh point
  1054. const float mx = mesh_index_to_xpos(i),
  1055. my = mesh_index_to_ypos(j);
  1056. if (!position_is_reachable_by_probe(mx, my)) // make sure the probe can get to the mesh point
  1057. continue;
  1058. found_a_NAN = true;
  1059. int8_t closest_x = -1, closest_y = -1;
  1060. float d1, d2 = 99999.9f;
  1061. for (int8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
  1062. for (int8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
  1063. if (!isnan(z_values[k][l])) {
  1064. found_a_real = true;
  1065. // Add in a random weighting factor that scrambles the probing of the
  1066. // last half of the mesh (when every unprobed mesh point is one index
  1067. // from a probed location).
  1068. d1 = HYPOT(i - k, j - l) + (1.0f / ((millis() % 47) + 13));
  1069. if (d1 < d2) { // found a closer distance from invalid mesh point at (i,j) to defined mesh point at (k,l)
  1070. d2 = d1; // found a closer location with
  1071. closest_x = i; // an assigned mesh point value
  1072. closest_y = j;
  1073. }
  1074. }
  1075. }
  1076. }
  1077. //
  1078. // At this point d2 should have the closest defined mesh point to invalid mesh point (i,j)
  1079. //
  1080. if (found_a_real && (closest_x >= 0) && (d2 > out_mesh.distance)) {
  1081. out_mesh.distance = d2; // found an invalid location with a greater distance
  1082. out_mesh.x_index = closest_x; // to a defined mesh point
  1083. out_mesh.y_index = closest_y;
  1084. }
  1085. }
  1086. } // for j
  1087. } // for i
  1088. if (!found_a_real && found_a_NAN) { // if the mesh is totally unpopulated, start the probing
  1089. out_mesh.x_index = GRID_MAX_POINTS_X / 2;
  1090. out_mesh.y_index = GRID_MAX_POINTS_Y / 2;
  1091. out_mesh.distance = 1;
  1092. }
  1093. return out_mesh;
  1094. }
  1095. mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const float &rx, const float &ry, const bool probe_as_reference, uint16_t bits[16]) {
  1096. mesh_index_pair out_mesh;
  1097. out_mesh.x_index = out_mesh.y_index = -1;
  1098. out_mesh.distance = -99999.9f;
  1099. // Get our reference position. Either the nozzle or probe location.
  1100. const float px = rx + (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
  1101. py = ry + (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
  1102. float best_so_far = 99999.99f;
  1103. for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1104. for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1105. if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
  1106. || (type == REAL && !isnan(z_values[i][j]))
  1107. || (type == SET_IN_BITMAP && is_bitmap_set(bits, i, j))
  1108. ) {
  1109. // We only get here if we found a Mesh Point of the specified type
  1110. const float mx = mesh_index_to_xpos(i),
  1111. my = mesh_index_to_ypos(j);
  1112. // If using the probe as the reference there are some unreachable locations.
  1113. // Also for round beds, there are grid points outside the bed the nozzle can't reach.
  1114. // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
  1115. if (probe_as_reference ? !position_is_reachable_by_probe(mx, my) : !position_is_reachable(mx, my))
  1116. continue;
  1117. // Reachable. Check if it's the best_so_far location to the nozzle.
  1118. float distance = HYPOT(px - mx, py - my);
  1119. // factor in the distance from the current location for the normal case
  1120. // so the nozzle isn't running all over the bed.
  1121. distance += HYPOT(current_position[X_AXIS] - mx, current_position[Y_AXIS] - my) * 0.1f;
  1122. if (distance < best_so_far) {
  1123. best_so_far = distance; // We found a closer location with
  1124. out_mesh.x_index = i; // the specified type of mesh value.
  1125. out_mesh.y_index = j;
  1126. out_mesh.distance = best_so_far;
  1127. }
  1128. }
  1129. } // for j
  1130. } // for i
  1131. return out_mesh;
  1132. }
  1133. #if ENABLED(NEWPANEL)
  1134. void abort_fine_tune() {
  1135. lcd_return_to_status();
  1136. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  1137. LCD_MESSAGEPGM(MSG_EDITING_STOPPED);
  1138. lcd_quick_feedback(true);
  1139. }
  1140. void unified_bed_leveling::fine_tune_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map) {
  1141. if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified
  1142. g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided.
  1143. #if ENABLED(UBL_MESH_EDIT_MOVES_Z)
  1144. const float h_offset = parser.seenval('H') ? parser.value_linear_units() : 0;
  1145. if (!WITHIN(h_offset, 0, 10)) {
  1146. SERIAL_PROTOCOLLNPGM("Offset out of bounds. (0 to 10mm)\n");
  1147. return;
  1148. }
  1149. #endif
  1150. mesh_index_pair location;
  1151. if (!position_is_reachable(rx, ry)) {
  1152. SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
  1153. return;
  1154. }
  1155. save_ubl_active_state_and_disable();
  1156. LCD_MESSAGEPGM(MSG_UBL_FINE_TUNE_MESH);
  1157. lcd_external_control = true; // Take over control of the LCD encoder
  1158. do_blocking_move_to(rx, ry, Z_CLEARANCE_BETWEEN_PROBES); // Move to the given XY with probe clearance
  1159. #if ENABLED(UBL_MESH_EDIT_MOVES_Z)
  1160. do_blocking_move_to_z(h_offset); // Move Z to the given 'H' offset
  1161. #endif
  1162. uint16_t not_done[16];
  1163. memset(not_done, 0xFF, sizeof(not_done));
  1164. do {
  1165. location = find_closest_mesh_point_of_type(SET_IN_BITMAP, rx, ry, USE_NOZZLE_AS_REFERENCE, not_done);
  1166. if (location.x_index < 0) break; // Stop when there are no more reachable points
  1167. bitmap_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so a new
  1168. // location is used on the next loop
  1169. const float rawx = mesh_index_to_xpos(location.x_index),
  1170. rawy = mesh_index_to_ypos(location.y_index);
  1171. if (!position_is_reachable(rawx, rawy)) break; // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
  1172. do_blocking_move_to(rawx, rawy, Z_CLEARANCE_BETWEEN_PROBES); // Move the nozzle to the edit point with probe clearance
  1173. #if ENABLED(UBL_MESH_EDIT_MOVES_Z)
  1174. do_blocking_move_to_z(h_offset); // Move Z to the given 'H' offset before editing
  1175. #endif
  1176. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1177. if (do_ubl_mesh_map) display_map(g29_map_type); // Display the current point
  1178. lcd_refresh();
  1179. float new_z = z_values[location.x_index][location.y_index];
  1180. if (isnan(new_z)) new_z = 0; // Invalid points begin at 0
  1181. new_z = FLOOR(new_z * 1000) * 0.001f; // Chop off digits after the 1000ths place
  1182. lcd_mesh_edit_setup(new_z);
  1183. do {
  1184. new_z = lcd_mesh_edit();
  1185. #if ENABLED(UBL_MESH_EDIT_MOVES_Z)
  1186. do_blocking_move_to_z(h_offset + new_z); // Move the nozzle as the point is edited
  1187. #endif
  1188. idle();
  1189. SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
  1190. } while (!is_lcd_clicked());
  1191. if (!lcd_map_control) lcd_return_to_status(); // Just editing a single point? Return to status
  1192. if (click_and_hold(abort_fine_tune)) goto FINE_TUNE_EXIT; // If the click is held down, abort editing
  1193. z_values[location.x_index][location.y_index] = new_z; // Save the updated Z value
  1194. safe_delay(20); // No switch noise
  1195. lcd_refresh();
  1196. } while (location.x_index >= 0 && --g29_repetition_cnt > 0);
  1197. FINE_TUNE_EXIT:
  1198. lcd_external_control = false;
  1199. KEEPALIVE_STATE(IN_HANDLER);
  1200. if (do_ubl_mesh_map) display_map(g29_map_type);
  1201. restore_ubl_active_state_and_leave();
  1202. do_blocking_move_to(rx, ry, Z_CLEARANCE_BETWEEN_PROBES);
  1203. LCD_MESSAGEPGM(MSG_UBL_DONE_EDITING_MESH);
  1204. SERIAL_ECHOLNPGM("Done Editing Mesh");
  1205. if (lcd_map_control)
  1206. lcd_goto_screen(_lcd_ubl_output_map_lcd);
  1207. else
  1208. lcd_return_to_status();
  1209. }
  1210. #endif // NEWPANEL
  1211. /**
  1212. * 'Smart Fill': Scan from the outward edges of the mesh towards the center.
  1213. * If an invalid location is found, use the next two points (if valid) to
  1214. * calculate a 'reasonable' value for the unprobed mesh point.
  1215. */
  1216. bool unified_bed_leveling::smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  1217. const int8_t x1 = x + xdir, x2 = x1 + xdir,
  1218. y1 = y + ydir, y2 = y1 + ydir;
  1219. // A NAN next to a pair of real values?
  1220. if (isnan(z_values[x][y]) && !isnan(z_values[x1][y1]) && !isnan(z_values[x2][y2])) {
  1221. if (z_values[x1][y1] < z_values[x2][y2]) // Angled downward?
  1222. z_values[x][y] = z_values[x1][y1]; // Use nearest (maybe a little too high.)
  1223. else
  1224. z_values[x][y] = 2.0f * z_values[x1][y1] - z_values[x2][y2]; // Angled upward...
  1225. return true;
  1226. }
  1227. return false;
  1228. }
  1229. typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
  1230. void unified_bed_leveling::smart_fill_mesh() {
  1231. static const smart_fill_info
  1232. info0 PROGMEM = { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
  1233. info1 PROGMEM = { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
  1234. info2 PROGMEM = { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
  1235. info3 PROGMEM = { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true }; // Right side of the mesh looking left
  1236. static const smart_fill_info * const info[] PROGMEM = { &info0, &info1, &info2, &info3 };
  1237. for (uint8_t i = 0; i < COUNT(info); ++i) {
  1238. const smart_fill_info *f = (smart_fill_info*)pgm_read_ptr(&info[i]);
  1239. const int8_t sx = pgm_read_byte(&f->sx), sy = pgm_read_byte(&f->sy),
  1240. ex = pgm_read_byte(&f->ex), ey = pgm_read_byte(&f->ey);
  1241. if (pgm_read_byte(&f->yfirst)) {
  1242. const int8_t dir = ex > sx ? 1 : -1;
  1243. for (uint8_t y = sy; y != ey; ++y)
  1244. for (uint8_t x = sx; x != ex; x += dir)
  1245. if (smart_fill_one(x, y, dir, 0)) break;
  1246. }
  1247. else {
  1248. const int8_t dir = ey > sy ? 1 : -1;
  1249. for (uint8_t x = sx; x != ex; ++x)
  1250. for (uint8_t y = sy; y != ey; y += dir)
  1251. if (smart_fill_one(x, y, 0, dir)) break;
  1252. }
  1253. }
  1254. }
  1255. #if HAS_BED_PROBE
  1256. #include "vector_3.h"
  1257. void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_3_pt_leveling) {
  1258. constexpr int16_t x_min = MAX(MIN_PROBE_X, MESH_MIN_X),
  1259. x_max = MIN(MAX_PROBE_X, MESH_MAX_X),
  1260. y_min = MAX(MIN_PROBE_Y, MESH_MIN_Y),
  1261. y_max = MIN(MAX_PROBE_Y, MESH_MAX_Y);
  1262. bool abort_flag = false;
  1263. float measured_z;
  1264. const float dx = float(x_max - x_min) / (g29_grid_size - 1),
  1265. dy = float(y_max - y_min) / (g29_grid_size - 1);
  1266. struct linear_fit_data lsf_results;
  1267. //float z1, z2, z3; // Needed for algorithm validation down below.
  1268. incremental_LSF_reset(&lsf_results);
  1269. if (do_3_pt_leveling) {
  1270. measured_z = probe_pt(PROBE_PT_1_X, PROBE_PT_1_Y, PROBE_PT_RAISE, g29_verbose_level);
  1271. if (isnan(measured_z))
  1272. abort_flag = true;
  1273. else {
  1274. measured_z -= get_z_correction(PROBE_PT_1_X, PROBE_PT_1_Y);
  1275. //z1 = measured_z;
  1276. if (g29_verbose_level > 3) {
  1277. serial_spaces(16);
  1278. SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z);
  1279. }
  1280. incremental_LSF(&lsf_results, PROBE_PT_1_X, PROBE_PT_1_Y, measured_z);
  1281. }
  1282. if (!abort_flag) {
  1283. measured_z = probe_pt(PROBE_PT_2_X, PROBE_PT_2_Y, PROBE_PT_RAISE, g29_verbose_level);
  1284. //z2 = measured_z;
  1285. if (isnan(measured_z))
  1286. abort_flag = true;
  1287. else {
  1288. measured_z -= get_z_correction(PROBE_PT_2_X, PROBE_PT_2_Y);
  1289. if (g29_verbose_level > 3) {
  1290. serial_spaces(16);
  1291. SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z);
  1292. }
  1293. incremental_LSF(&lsf_results, PROBE_PT_2_X, PROBE_PT_2_Y, measured_z);
  1294. }
  1295. }
  1296. if (!abort_flag) {
  1297. measured_z = probe_pt(PROBE_PT_3_X, PROBE_PT_3_Y, PROBE_PT_STOW, g29_verbose_level);
  1298. //z3 = measured_z;
  1299. if (isnan(measured_z))
  1300. abort_flag = true;
  1301. else {
  1302. measured_z -= get_z_correction(PROBE_PT_3_X, PROBE_PT_3_Y);
  1303. if (g29_verbose_level > 3) {
  1304. serial_spaces(16);
  1305. SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z);
  1306. }
  1307. incremental_LSF(&lsf_results, PROBE_PT_3_X, PROBE_PT_3_Y, measured_z);
  1308. }
  1309. }
  1310. STOW_PROBE();
  1311. #ifdef Z_AFTER_PROBING
  1312. move_z_after_probing();
  1313. #endif
  1314. if (abort_flag) {
  1315. SERIAL_ECHOPGM("?Error probing point. Aborting operation.\n");
  1316. return;
  1317. }
  1318. }
  1319. else { // !do_3_pt_leveling
  1320. bool zig_zag = false;
  1321. for (uint8_t ix = 0; ix < g29_grid_size; ix++) {
  1322. const float rx = float(x_min) + ix * dx;
  1323. for (int8_t iy = 0; iy < g29_grid_size; iy++) {
  1324. const float ry = float(y_min) + dy * (zig_zag ? g29_grid_size - 1 - iy : iy);
  1325. if (!abort_flag) {
  1326. measured_z = probe_pt(rx, ry, parser.seen('E') ? PROBE_PT_STOW : PROBE_PT_RAISE, g29_verbose_level); // TODO: Needs error handling
  1327. abort_flag = isnan(measured_z);
  1328. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1329. if (DEBUGGING(LEVELING)) {
  1330. SERIAL_CHAR('(');
  1331. SERIAL_PROTOCOL_F(rx, 7);
  1332. SERIAL_CHAR(',');
  1333. SERIAL_PROTOCOL_F(ry, 7);
  1334. SERIAL_ECHOPGM(") logical: ");
  1335. SERIAL_CHAR('(');
  1336. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 7);
  1337. SERIAL_CHAR(',');
  1338. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ry), 7);
  1339. SERIAL_ECHOPGM(") measured: ");
  1340. SERIAL_PROTOCOL_F(measured_z, 7);
  1341. SERIAL_ECHOPGM(" correction: ");
  1342. SERIAL_PROTOCOL_F(get_z_correction(rx, ry), 7);
  1343. }
  1344. #endif
  1345. measured_z -= get_z_correction(rx, ry) /* + zprobe_zoffset */ ;
  1346. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1347. if (DEBUGGING(LEVELING)) {
  1348. SERIAL_ECHOPGM(" final >>>---> ");
  1349. SERIAL_PROTOCOL_F(measured_z, 7);
  1350. SERIAL_EOL();
  1351. }
  1352. #endif
  1353. if (g29_verbose_level > 3) {
  1354. serial_spaces(16);
  1355. SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z);
  1356. }
  1357. incremental_LSF(&lsf_results, rx, ry, measured_z);
  1358. }
  1359. }
  1360. zig_zag ^= true;
  1361. }
  1362. }
  1363. STOW_PROBE();
  1364. #ifdef Z_AFTER_PROBING
  1365. move_z_after_probing();
  1366. #endif
  1367. if (abort_flag || finish_incremental_LSF(&lsf_results)) {
  1368. SERIAL_ECHOPGM("Could not complete LSF!");
  1369. return;
  1370. }
  1371. vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1).get_normal();
  1372. if (g29_verbose_level > 2) {
  1373. SERIAL_ECHOPGM("bed plane normal = [");
  1374. SERIAL_PROTOCOL_F(normal.x, 7);
  1375. SERIAL_PROTOCOLCHAR(',');
  1376. SERIAL_PROTOCOL_F(normal.y, 7);
  1377. SERIAL_PROTOCOLCHAR(',');
  1378. SERIAL_PROTOCOL_F(normal.z, 7);
  1379. SERIAL_ECHOLNPGM("]");
  1380. }
  1381. matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
  1382. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1383. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1384. float x_tmp = mesh_index_to_xpos(i),
  1385. y_tmp = mesh_index_to_ypos(j),
  1386. z_tmp = z_values[i][j];
  1387. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1388. if (DEBUGGING(LEVELING)) {
  1389. SERIAL_ECHOPGM("before rotation = [");
  1390. SERIAL_PROTOCOL_F(x_tmp, 7);
  1391. SERIAL_PROTOCOLCHAR(',');
  1392. SERIAL_PROTOCOL_F(y_tmp, 7);
  1393. SERIAL_PROTOCOLCHAR(',');
  1394. SERIAL_PROTOCOL_F(z_tmp, 7);
  1395. SERIAL_ECHOPGM("] ---> ");
  1396. safe_delay(20);
  1397. }
  1398. #endif
  1399. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  1400. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1401. if (DEBUGGING(LEVELING)) {
  1402. SERIAL_ECHOPGM("after rotation = [");
  1403. SERIAL_PROTOCOL_F(x_tmp, 7);
  1404. SERIAL_PROTOCOLCHAR(',');
  1405. SERIAL_PROTOCOL_F(y_tmp, 7);
  1406. SERIAL_PROTOCOLCHAR(',');
  1407. SERIAL_PROTOCOL_F(z_tmp, 7);
  1408. SERIAL_ECHOLNPGM("]");
  1409. safe_delay(55);
  1410. }
  1411. #endif
  1412. z_values[i][j] = z_tmp - lsf_results.D;
  1413. }
  1414. }
  1415. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1416. if (DEBUGGING(LEVELING)) {
  1417. rotation.debug(PSTR("rotation matrix:\n"));
  1418. SERIAL_ECHOPGM("LSF Results A=");
  1419. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1420. SERIAL_ECHOPGM(" B=");
  1421. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1422. SERIAL_ECHOPGM(" D=");
  1423. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1424. SERIAL_EOL();
  1425. safe_delay(55);
  1426. SERIAL_ECHOPGM("bed plane normal = [");
  1427. SERIAL_PROTOCOL_F(normal.x, 7);
  1428. SERIAL_PROTOCOLCHAR(',');
  1429. SERIAL_PROTOCOL_F(normal.y, 7);
  1430. SERIAL_PROTOCOLCHAR(',');
  1431. SERIAL_PROTOCOL_F(normal.z, 7);
  1432. SERIAL_ECHOPGM("]\n");
  1433. SERIAL_EOL();
  1434. /**
  1435. * The following code can be used to check the validity of the mesh tilting algorithm.
  1436. * When a 3-Point Mesh Tilt is done, the same algorithm is used as the grid based tilting.
  1437. * The only difference is just 3 points are used in the calculations. That fact guarantees
  1438. * each probed point should have an exact match when a get_z_correction() for that location
  1439. * is calculated. The Z error between the probed point locations and the get_z_correction()
  1440. * numbers for those locations should be 0.
  1441. */
  1442. #if 0
  1443. float t, t1, d;
  1444. t = normal.x * (PROBE_PT_1_X) + normal.y * (PROBE_PT_1_Y);
  1445. d = t + normal.z * z1;
  1446. SERIAL_ECHOPGM("D from 1st point: ");
  1447. SERIAL_ECHO_F(d, 6);
  1448. SERIAL_ECHOPGM(" Z error: ");
  1449. SERIAL_ECHO_F(normal.z*z1-get_z_correction(PROBE_PT_1_X, PROBE_PT_1_Y), 6);
  1450. SERIAL_EOL();
  1451. t = normal.x * (PROBE_PT_2_X) + normal.y * (PROBE_PT_2_Y);
  1452. d = t + normal.z * z2;
  1453. SERIAL_EOL();
  1454. SERIAL_ECHOPGM("D from 2nd point: ");
  1455. SERIAL_ECHO_F(d, 6);
  1456. SERIAL_ECHOPGM(" Z error: ");
  1457. SERIAL_ECHO_F(normal.z*z2-get_z_correction(PROBE_PT_2_X, PROBE_PT_2_Y), 6);
  1458. SERIAL_EOL();
  1459. t = normal.x * (PROBE_PT_3_X) + normal.y * (PROBE_PT_3_Y);
  1460. d = t + normal.z * z3;
  1461. SERIAL_ECHOPGM("D from 3rd point: ");
  1462. SERIAL_ECHO_F(d, 6);
  1463. SERIAL_ECHOPGM(" Z error: ");
  1464. SERIAL_ECHO_F(normal.z*z3-get_z_correction(PROBE_PT_3_X, PROBE_PT_3_Y), 6);
  1465. SERIAL_EOL();
  1466. t = normal.x * (Z_SAFE_HOMING_X_POINT) + normal.y * (Z_SAFE_HOMING_Y_POINT);
  1467. d = t + normal.z * 0;
  1468. SERIAL_ECHOPGM("D from home location with Z=0 : ");
  1469. SERIAL_ECHO_F(d, 6);
  1470. SERIAL_EOL();
  1471. t = normal.x * (Z_SAFE_HOMING_X_POINT) + normal.y * (Z_SAFE_HOMING_Y_POINT);
  1472. d = t + get_z_correction(Z_SAFE_HOMING_X_POINT, Z_SAFE_HOMING_Y_POINT); // normal.z * 0;
  1473. SERIAL_ECHOPGM("D from home location using mesh value for Z: ");
  1474. SERIAL_ECHO_F(d, 6);
  1475. SERIAL_ECHOPAIR(" Z error: (", Z_SAFE_HOMING_X_POINT);
  1476. SERIAL_ECHOPAIR(",", Z_SAFE_HOMING_Y_POINT );
  1477. SERIAL_ECHOPGM(") = ");
  1478. SERIAL_ECHO_F(get_z_correction(Z_SAFE_HOMING_X_POINT, Z_SAFE_HOMING_Y_POINT), 6);
  1479. SERIAL_EOL();
  1480. #endif
  1481. } // DEBUGGING(LEVELING)
  1482. #endif
  1483. }
  1484. #endif // HAS_BED_PROBE
  1485. #if ENABLED(UBL_G29_P31)
  1486. void unified_bed_leveling::smart_fill_wlsf(const float &weight_factor) {
  1487. // For each undefined mesh point, compute a distance-weighted least squares fit
  1488. // from all the originally populated mesh points, weighted toward the point
  1489. // being extrapolated so that nearby points will have greater influence on
  1490. // the point being extrapolated. Then extrapolate the mesh point from WLSF.
  1491. static_assert(GRID_MAX_POINTS_Y <= 16, "GRID_MAX_POINTS_Y too big");
  1492. uint16_t bitmap[GRID_MAX_POINTS_X] = { 0 };
  1493. struct linear_fit_data lsf_results;
  1494. SERIAL_ECHOPGM("Extrapolating mesh...");
  1495. const float weight_scaled = weight_factor * MAX(MESH_X_DIST, MESH_Y_DIST);
  1496. for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++)
  1497. for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++)
  1498. if (!isnan(z_values[jx][jy]))
  1499. SBI(bitmap[jx], jy);
  1500. for (uint8_t ix = 0; ix < GRID_MAX_POINTS_X; ix++) {
  1501. const float px = mesh_index_to_xpos(ix);
  1502. for (uint8_t iy = 0; iy < GRID_MAX_POINTS_Y; iy++) {
  1503. const float py = mesh_index_to_ypos(iy);
  1504. if (isnan(z_values[ix][iy])) {
  1505. // undefined mesh point at (px,py), compute weighted LSF from original valid mesh points.
  1506. incremental_LSF_reset(&lsf_results);
  1507. for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) {
  1508. const float rx = mesh_index_to_xpos(jx);
  1509. for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) {
  1510. if (TEST(bitmap[jx], jy)) {
  1511. const float ry = mesh_index_to_ypos(jy),
  1512. rz = z_values[jx][jy],
  1513. w = 1 + weight_scaled / HYPOT((rx - px), (ry - py));
  1514. incremental_WLSF(&lsf_results, rx, ry, rz, w);
  1515. }
  1516. }
  1517. }
  1518. if (finish_incremental_LSF(&lsf_results)) {
  1519. SERIAL_ECHOLNPGM("Insufficient data");
  1520. return;
  1521. }
  1522. const float ez = -lsf_results.D - lsf_results.A * px - lsf_results.B * py;
  1523. z_values[ix][iy] = ez;
  1524. idle(); // housekeeping
  1525. }
  1526. }
  1527. }
  1528. SERIAL_ECHOLNPGM("done");
  1529. }
  1530. #endif // UBL_G29_P31
  1531. #endif // AUTO_BED_LEVELING_UBL