ubl_motion.cpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "Marlin.h"
  25. #include "ubl.h"
  26. #include "planner.h"
  27. #include "stepper.h"
  28. #include <avr/io.h>
  29. #include <math.h>
  30. #if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
  31. inline void set_current_from_destination() { COPY(current_position, destination); }
  32. #else
  33. extern void set_current_from_destination();
  34. #endif
  35. #if !UBL_SEGMENTED
  36. void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, const uint8_t extruder) {
  37. /**
  38. * Much of the nozzle movement will be within the same cell. So we will do as little computation
  39. * as possible to determine if this is the case. If this move is within the same cell, we will
  40. * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
  41. */
  42. #if ENABLED(SKEW_CORRECTION)
  43. // For skew correction just adjust the destination point and we're done
  44. float start[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_CART] },
  45. end[XYZE] = { destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_CART] };
  46. planner.skew(start[X_AXIS], start[Y_AXIS], start[Z_AXIS]);
  47. planner.skew(end[X_AXIS], end[Y_AXIS], end[Z_AXIS]);
  48. #else
  49. const float (&start)[XYZE] = current_position,
  50. (&end)[XYZE] = destination;
  51. #endif
  52. const int cell_start_xi = get_cell_index_x(start[X_AXIS]),
  53. cell_start_yi = get_cell_index_y(start[Y_AXIS]),
  54. cell_dest_xi = get_cell_index_x(end[X_AXIS]),
  55. cell_dest_yi = get_cell_index_y(end[Y_AXIS]);
  56. if (g26_debug_flag) {
  57. SERIAL_ECHOPAIR(" ubl.line_to_destination_cartesian(xe=", destination[X_AXIS]);
  58. SERIAL_ECHOPAIR(", ye=", destination[Y_AXIS]);
  59. SERIAL_ECHOPAIR(", ze=", destination[Z_AXIS]);
  60. SERIAL_ECHOPAIR(", ee=", destination[E_CART]);
  61. SERIAL_CHAR(')');
  62. SERIAL_EOL();
  63. debug_current_and_destination(PSTR("Start of ubl.line_to_destination_cartesian()"));
  64. }
  65. // A move within the same cell needs no splitting
  66. if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) {
  67. // For a move off the bed, use a constant Z raise
  68. if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
  69. // Note: There is no Z Correction in this case. We are off the grid and don't know what
  70. // a reasonable correction would be. If the user has specified a UBL_Z_RAISE_WHEN_OFF_MESH
  71. // value, that will be used instead of a calculated (Bi-Linear interpolation) correction.
  72. const float z_raise = 0.0
  73. #ifdef UBL_Z_RAISE_WHEN_OFF_MESH
  74. + UBL_Z_RAISE_WHEN_OFF_MESH
  75. #endif
  76. ;
  77. planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z_raise, end[E_CART], feed_rate, extruder);
  78. set_current_from_destination();
  79. if (g26_debug_flag)
  80. debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination_cartesian()"));
  81. return;
  82. }
  83. FINAL_MOVE:
  84. // The distance is always MESH_X_DIST so multiply by the constant reciprocal.
  85. const float xratio = (end[X_AXIS] - mesh_index_to_xpos(cell_dest_xi)) * (1.0f / (MESH_X_DIST));
  86. float z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
  87. (z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
  88. z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
  89. (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
  90. if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0;
  91. // X cell-fraction done. Interpolate the two Z offsets with the Y fraction for the final Z offset.
  92. const float yratio = (end[Y_AXIS] - mesh_index_to_ypos(cell_dest_yi)) * (1.0f / (MESH_Y_DIST)),
  93. z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;
  94. // Undefined parts of the Mesh in z_values[][] are NAN.
  95. // Replace NAN corrections with 0.0 to prevent NAN propagation.
  96. planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + (isnan(z0) ? 0.0 : z0), end[E_CART], feed_rate, extruder);
  97. if (g26_debug_flag)
  98. debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination_cartesian()"));
  99. set_current_from_destination();
  100. return;
  101. }
  102. /**
  103. * Past this point the move is known to cross one or more mesh lines. Check for the most common
  104. * case - crossing only one X or Y line - after details are worked out to reduce computation.
  105. */
  106. const float dx = end[X_AXIS] - start[X_AXIS],
  107. dy = end[Y_AXIS] - start[Y_AXIS];
  108. const int left_flag = dx < 0.0 ? 1 : 0,
  109. down_flag = dy < 0.0 ? 1 : 0;
  110. const float adx = left_flag ? -dx : dx,
  111. ady = down_flag ? -dy : dy;
  112. const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
  113. dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
  114. /**
  115. * Compute the extruder scaling factor for each partial move, checking for
  116. * zero-length moves that would result in an infinite scaling factor.
  117. * A float divide is required for this, but then it just multiplies.
  118. * Also select a scaling factor based on the larger of the X and Y
  119. * components. The larger of the two is used to preserve precision.
  120. */
  121. const bool use_x_dist = adx > ady;
  122. float on_axis_distance = use_x_dist ? dx : dy,
  123. e_position = end[E_CART] - start[E_CART],
  124. z_position = end[Z_AXIS] - start[Z_AXIS];
  125. const float e_normalized_dist = e_position / on_axis_distance,
  126. z_normalized_dist = z_position / on_axis_distance;
  127. int current_xi = cell_start_xi,
  128. current_yi = cell_start_yi;
  129. const float m = dy / dx,
  130. c = start[Y_AXIS] - m * start[X_AXIS];
  131. const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
  132. inf_m_flag = (isinf(m) != 0);
  133. /**
  134. * Handle vertical lines that stay within one column.
  135. * These need not be perfectly vertical.
  136. */
  137. if (dxi == 0) { // Vertical line?
  138. current_yi += down_flag; // Line going down? Just go to the bottom.
  139. while (current_yi != cell_dest_yi + down_flag) {
  140. current_yi += dyi;
  141. const float next_mesh_line_y = mesh_index_to_ypos(current_yi);
  142. /**
  143. * Skip the calculations for an infinite slope.
  144. * For others the next X is the same so this can continue.
  145. * Calculate X at the next Y mesh line.
  146. */
  147. const float rx = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
  148. float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi, current_yi)
  149. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  150. // Undefined parts of the Mesh in z_values[][] are NAN.
  151. // Replace NAN corrections with 0.0 to prevent NAN propagation.
  152. if (isnan(z0)) z0 = 0.0;
  153. const float ry = mesh_index_to_ypos(current_yi);
  154. /**
  155. * Without this check, it's possible to generate a zero length move, as in the case where
  156. * the line is heading down, starting exactly on a mesh line boundary. Since this is rare
  157. * it might be fine to remove this check and let planner.buffer_segment() filter it out.
  158. */
  159. if (ry != start[Y_AXIS]) {
  160. if (!inf_normalized_flag) {
  161. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
  162. e_position = start[E_CART] + on_axis_distance * e_normalized_dist;
  163. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  164. }
  165. else {
  166. e_position = end[E_CART];
  167. z_position = end[Z_AXIS];
  168. }
  169. planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder);
  170. } //else printf("FIRST MOVE PRUNED ");
  171. }
  172. if (g26_debug_flag)
  173. debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination_cartesian()"));
  174. // At the final destination? Usually not, but when on a Y Mesh Line it's completed.
  175. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  176. goto FINAL_MOVE;
  177. set_current_from_destination();
  178. return;
  179. }
  180. /**
  181. * Handle horizontal lines that stay within one row.
  182. * These need not be perfectly horizontal.
  183. */
  184. if (dyi == 0) { // Horizontal line?
  185. current_xi += left_flag; // Heading left? Just go to the left edge of the cell for the first move.
  186. while (current_xi != cell_dest_xi + left_flag) {
  187. current_xi += dxi;
  188. const float next_mesh_line_x = mesh_index_to_xpos(current_xi),
  189. ry = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
  190. float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi, current_yi)
  191. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  192. // Undefined parts of the Mesh in z_values[][] are NAN.
  193. // Replace NAN corrections with 0.0 to prevent NAN propagation.
  194. if (isnan(z0)) z0 = 0.0;
  195. const float rx = mesh_index_to_xpos(current_xi);
  196. /**
  197. * Without this check, it's possible to generate a zero length move, as in the case where
  198. * the line is heading left, starting exactly on a mesh line boundary. Since this is rare
  199. * it might be fine to remove this check and let planner.buffer_segment() filter it out.
  200. */
  201. if (rx != start[X_AXIS]) {
  202. if (!inf_normalized_flag) {
  203. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : ry - start[Y_AXIS];
  204. e_position = start[E_CART] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
  205. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  206. }
  207. else {
  208. e_position = end[E_CART];
  209. z_position = end[Z_AXIS];
  210. }
  211. if (!planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder))
  212. break;
  213. } //else printf("FIRST MOVE PRUNED ");
  214. }
  215. if (g26_debug_flag)
  216. debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination_cartesian()"));
  217. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  218. goto FINAL_MOVE;
  219. set_current_from_destination();
  220. return;
  221. }
  222. /**
  223. *
  224. * Handle the generic case of a line crossing both X and Y Mesh lines.
  225. *
  226. */
  227. int xi_cnt = cell_start_xi - cell_dest_xi,
  228. yi_cnt = cell_start_yi - cell_dest_yi;
  229. if (xi_cnt < 0) xi_cnt = -xi_cnt;
  230. if (yi_cnt < 0) yi_cnt = -yi_cnt;
  231. current_xi += left_flag;
  232. current_yi += down_flag;
  233. while (xi_cnt || yi_cnt) {
  234. const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi),
  235. next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi),
  236. ry = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
  237. rx = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
  238. // (No need to worry about m being zero.
  239. // If that was the case, it was already detected
  240. // as a vertical line move above.)
  241. if (left_flag == (rx > next_mesh_line_x)) { // Check if we hit the Y line first
  242. // Yes! Crossing a Y Mesh Line next
  243. float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi - left_flag, current_yi + dyi)
  244. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  245. // Undefined parts of the Mesh in z_values[][] are NAN.
  246. // Replace NAN corrections with 0.0 to prevent NAN propagation.
  247. if (isnan(z0)) z0 = 0.0;
  248. if (!inf_normalized_flag) {
  249. on_axis_distance = use_x_dist ? rx - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  250. e_position = start[E_CART] + on_axis_distance * e_normalized_dist;
  251. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  252. }
  253. else {
  254. e_position = end[E_CART];
  255. z_position = end[Z_AXIS];
  256. }
  257. if (!planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder))
  258. break;
  259. current_yi += dyi;
  260. yi_cnt--;
  261. }
  262. else {
  263. // Yes! Crossing a X Mesh Line next
  264. float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi + dxi, current_yi - down_flag)
  265. * planner.fade_scaling_factor_for_z(end[Z_AXIS]);
  266. // Undefined parts of the Mesh in z_values[][] are NAN.
  267. // Replace NAN corrections with 0.0 to prevent NAN propagation.
  268. if (isnan(z0)) z0 = 0.0;
  269. if (!inf_normalized_flag) {
  270. on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : ry - start[Y_AXIS];
  271. e_position = start[E_CART] + on_axis_distance * e_normalized_dist;
  272. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  273. }
  274. else {
  275. e_position = end[E_CART];
  276. z_position = end[Z_AXIS];
  277. }
  278. if (!planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder))
  279. break;
  280. current_xi += dxi;
  281. xi_cnt--;
  282. }
  283. if (xi_cnt < 0 || yi_cnt < 0) break; // Too far! Exit the loop and go to FINAL_MOVE
  284. }
  285. if (g26_debug_flag)
  286. debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination_cartesian()"));
  287. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  288. goto FINAL_MOVE;
  289. set_current_from_destination();
  290. }
  291. #else // UBL_SEGMENTED
  292. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  293. static float scara_feed_factor, scara_oldA, scara_oldB;
  294. #endif
  295. // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
  296. // so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
  297. inline void _O2 ubl_buffer_segment_raw(const float (&in_raw)[XYZE], const float &fr) {
  298. #if ENABLED(SKEW_CORRECTION)
  299. float raw[XYZE] = { in_raw[X_AXIS], in_raw[Y_AXIS], in_raw[Z_AXIS] };
  300. planner.skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]);
  301. #else
  302. const float (&raw)[XYZE] = in_raw;
  303. #endif
  304. #if ENABLED(DELTA) // apply delta inverse_kinematics
  305. DELTA_IK(raw);
  306. planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_CART], fr, active_extruder);
  307. #elif ENABLED(HANGPRINTER) // apply hangprinter inverse_kinematics
  308. HANGPRINTER_IK(raw);
  309. planner.buffer_segment(line_lengths[A_AXIS], line_lengths[B_AXIS], line_lengths[C_AXIS], line_lengths[D_AXIS], in_raw[E_CART], fr, active_extruder);
  310. #elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
  311. inverse_kinematics(raw); // this writes delta[ABC] from raw[XYZE]
  312. // should move the feedrate scaling to scara inverse_kinematics
  313. const float adiff = ABS(delta[A_AXIS] - scara_oldA),
  314. bdiff = ABS(delta[B_AXIS] - scara_oldB);
  315. scara_oldA = delta[A_AXIS];
  316. scara_oldB = delta[B_AXIS];
  317. float s_feedrate = MAX(adiff, bdiff) * scara_feed_factor;
  318. planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_CART], s_feedrate, active_extruder);
  319. #else // CARTESIAN
  320. planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], in_raw[E_CART], fr, active_extruder);
  321. #endif
  322. }
  323. #if IS_SCARA
  324. #define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
  325. #elif ENABLED(DELTA)
  326. #define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
  327. #else // CARTESIAN
  328. #ifdef LEVELED_SEGMENT_LENGTH
  329. #define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH
  330. #else
  331. #define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
  332. #endif
  333. #endif
  334. /**
  335. * Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
  336. * This calls planner.buffer_segment multiple times for small incremental moves.
  337. * Returns true if did NOT move, false if moved (requires current_position update).
  338. */
  339. bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate) {
  340. if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
  341. return true; // did not move, so current_position still accurate
  342. const float total[XYZE] = {
  343. rtarget[X_AXIS] - current_position[X_AXIS],
  344. rtarget[Y_AXIS] - current_position[Y_AXIS],
  345. rtarget[Z_AXIS] - current_position[Z_AXIS],
  346. rtarget[E_CART] - current_position[E_CART]
  347. };
  348. const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]); // total horizontal xy distance
  349. #if IS_KINEMATIC
  350. const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
  351. uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
  352. seglimit = lroundf(cartesian_xy_mm * (1.0f / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
  353. NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
  354. #else
  355. uint16_t segments = lroundf(cartesian_xy_mm * (1.0f / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
  356. #endif
  357. NOLESS(segments, 1U); // must have at least one segment
  358. const float inv_segments = 1.0f / segments; // divide once, multiply thereafter
  359. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  360. scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
  361. scara_oldA = planner.get_axis_position_degrees(A_AXIS);
  362. scara_oldB = planner.get_axis_position_degrees(B_AXIS);
  363. #endif
  364. const float diff[XYZE] = {
  365. total[X_AXIS] * inv_segments,
  366. total[Y_AXIS] * inv_segments,
  367. total[Z_AXIS] * inv_segments,
  368. total[E_CART] * inv_segments
  369. };
  370. // Note that E segment distance could vary slightly as z mesh height
  371. // changes for each segment, but small enough to ignore.
  372. float raw[XYZE] = {
  373. current_position[X_AXIS],
  374. current_position[Y_AXIS],
  375. current_position[Z_AXIS],
  376. current_position[E_CART]
  377. };
  378. // Only compute leveling per segment if ubl active and target below z_fade_height.
  379. if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) { // no mesh leveling
  380. while (--segments) {
  381. LOOP_XYZE(i) raw[i] += diff[i];
  382. ubl_buffer_segment_raw(raw, feedrate);
  383. }
  384. ubl_buffer_segment_raw(rtarget, feedrate);
  385. return false; // moved but did not set_current_from_destination();
  386. }
  387. // Otherwise perform per-segment leveling
  388. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  389. const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);
  390. #endif
  391. // increment to first segment destination
  392. LOOP_XYZE(i) raw[i] += diff[i];
  393. for (;;) { // for each mesh cell encountered during the move
  394. // Compute mesh cell invariants that remain constant for all segments within cell.
  395. // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
  396. // the bilinear interpolation from the adjacent cell within the mesh will still work.
  397. // Inner loop will exit each time (because out of cell bounds) but will come back
  398. // in top of loop and again re-find same adjacent cell and use it, just less efficient
  399. // for mesh inset area.
  400. int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0f / (MESH_X_DIST)),
  401. cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0f / (MESH_Y_DIST));
  402. cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
  403. cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
  404. const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
  405. y0 = mesh_index_to_ypos(cell_yi);
  406. float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
  407. z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
  408. z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
  409. z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
  410. if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating planner.leveling_active (G29 A)
  411. if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
  412. if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
  413. if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
  414. float cx = raw[X_AXIS] - x0, // cell-relative x and y
  415. cy = raw[Y_AXIS] - y0;
  416. const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0f / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
  417. z_xmy1 = (z_x1y1 - z_x0y1) * (1.0f / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
  418. float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
  419. const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
  420. z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
  421. float z_cxym = z_cxyd * (1.0f / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
  422. // float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
  423. // As subsequent segments step through this cell, the z_cxy0 intercept will change
  424. // and the z_cxym slope will change, both as a function of cx within the cell, and
  425. // each change by a constant for fixed segment lengths.
  426. const float z_sxy0 = z_xmy0 * diff[X_AXIS], // per-segment adjustment to z_cxy0
  427. z_sxym = (z_xmy1 - z_xmy0) * (1.0f / (MESH_Y_DIST)) * diff[X_AXIS]; // per-segment adjustment to z_cxym
  428. for (;;) { // for all segments within this mesh cell
  429. if (--segments == 0) // if this is last segment, use rtarget for exact
  430. COPY(raw, rtarget);
  431. const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy
  432. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  433. * fade_scaling_factor // apply fade factor to interpolated mesh height
  434. #endif
  435. ;
  436. const float z = raw[Z_AXIS];
  437. raw[Z_AXIS] += z_cxcy;
  438. ubl_buffer_segment_raw(raw, feedrate);
  439. raw[Z_AXIS] = z;
  440. if (segments == 0) // done with last segment
  441. return false; // did not set_current_from_destination()
  442. LOOP_XYZE(i) raw[i] += diff[i];
  443. cx += diff[X_AXIS];
  444. cy += diff[Y_AXIS];
  445. if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) // done within this cell, break to next
  446. break;
  447. // Next segment still within same mesh cell, adjust the per-segment
  448. // slope and intercept to compute next z height.
  449. z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
  450. z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
  451. } // segment loop
  452. } // cell loop
  453. return false; // caller will update current_position
  454. }
  455. #endif // UBL_SEGMENTED
  456. #endif // AUTO_BED_LEVELING_UBL