123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
- #ifndef MARLIN_H
- #define MARLIN_H
- #include <math.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <inttypes.h>
- #include <util/delay.h>
- #include <avr/eeprom.h>
- #include <avr/interrupt.h>
- #include "MarlinConfig.h"
- #ifdef DEBUG_GCODE_PARSER
- #include "parser.h"
- #endif
- #include "enum.h"
- #include "types.h"
- #include "fastio.h"
- #include "utility.h"
- #include "serial.h"
- void idle(
- #if ENABLED(ADVANCED_PAUSE_FEATURE)
- bool no_stepper_sleep = false // pass true to keep steppers from disabling on timeout
- #endif
- );
- void manage_inactivity(const bool ignore_stepper_queue=false);
- extern const char axis_codes[XYZE];
- #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
- extern bool extruder_duplication_enabled;
- #endif
- #if HAS_X2_ENABLE
- #define enable_X() do{ X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); }while(0)
- #define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); CBI(axis_known_position, X_AXIS); }while(0)
- #elif HAS_X_ENABLE
- #define enable_X() X_ENABLE_WRITE( X_ENABLE_ON)
- #define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); CBI(axis_known_position, X_AXIS); }while(0)
- #else
- #define enable_X() NOOP
- #define disable_X() NOOP
- #endif
- #if HAS_Y2_ENABLE
- #define enable_Y() do{ Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }while(0)
- #define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); CBI(axis_known_position, Y_AXIS); }while(0)
- #elif HAS_Y_ENABLE
- #define enable_Y() Y_ENABLE_WRITE( Y_ENABLE_ON)
- #define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); CBI(axis_known_position, Y_AXIS); }while(0)
- #else
- #define enable_Y() NOOP
- #define disable_Y() NOOP
- #endif
- #if HAS_Z2_ENABLE
- #define enable_Z() do{ Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }while(0)
- #define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); CBI(axis_known_position, Z_AXIS); }while(0)
- #elif HAS_Z_ENABLE
- #define enable_Z() Z_ENABLE_WRITE( Z_ENABLE_ON)
- #define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); CBI(axis_known_position, Z_AXIS); }while(0)
- #else
- #define enable_Z() NOOP
- #define disable_Z() NOOP
- #endif
- #if ENABLED(MIXING_EXTRUDER)
- /**
- * Mixing steppers synchronize their enable (and direction) together
- */
- #if MIXING_STEPPERS > 4
- #define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); E4_ENABLE_WRITE( E_ENABLE_ON); }
- #define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); E4_ENABLE_WRITE(!E_ENABLE_ON); }
- #elif MIXING_STEPPERS > 3
- #define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); }
- #define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); }
- #elif MIXING_STEPPERS > 2
- #define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); }
- #define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); }
- #else
- #define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); }
- #define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); }
- #endif
- #define enable_E1() NOOP
- #define disable_E1() NOOP
- #define enable_E2() NOOP
- #define disable_E2() NOOP
- #define enable_E3() NOOP
- #define disable_E3() NOOP
- #define enable_E4() NOOP
- #define disable_E4() NOOP
- #else // !MIXING_EXTRUDER
- #if HAS_E0_ENABLE
- #define enable_E0() E0_ENABLE_WRITE( E_ENABLE_ON)
- #define disable_E0() E0_ENABLE_WRITE(!E_ENABLE_ON)
- #else
- #define enable_E0() NOOP
- #define disable_E0() NOOP
- #endif
- #if E_STEPPERS > 1 && HAS_E1_ENABLE
- #define enable_E1() E1_ENABLE_WRITE( E_ENABLE_ON)
- #define disable_E1() E1_ENABLE_WRITE(!E_ENABLE_ON)
- #else
- #define enable_E1() NOOP
- #define disable_E1() NOOP
- #endif
- #if E_STEPPERS > 2 && HAS_E2_ENABLE
- #define enable_E2() E2_ENABLE_WRITE( E_ENABLE_ON)
- #define disable_E2() E2_ENABLE_WRITE(!E_ENABLE_ON)
- #else
- #define enable_E2() NOOP
- #define disable_E2() NOOP
- #endif
- #if E_STEPPERS > 3 && HAS_E3_ENABLE
- #define enable_E3() E3_ENABLE_WRITE( E_ENABLE_ON)
- #define disable_E3() E3_ENABLE_WRITE(!E_ENABLE_ON)
- #else
- #define enable_E3() NOOP
- #define disable_E3() NOOP
- #endif
- #if E_STEPPERS > 4 && HAS_E4_ENABLE
- #define enable_E4() E4_ENABLE_WRITE( E_ENABLE_ON)
- #define disable_E4() E4_ENABLE_WRITE(!E_ENABLE_ON)
- #else
- #define enable_E4() NOOP
- #define disable_E4() NOOP
- #endif
- #endif // !MIXING_EXTRUDER
- #if ENABLED(HANGPRINTER)
- #define enable_A() enable_X()
- #define enable_B() enable_Y()
- #define enable_C() enable_Z()
- #define __D_ENABLE(p) E##p##_ENABLE_WRITE(E_ENABLE_ON)
- #define _D_ENABLE(p) __D_ENABLE(p)
- #define enable_D() _D_ENABLE(EXTRUDERS)
- // Don't allow any axes to be disabled
- #undef disable_X
- #undef disable_Y
- #undef disable_Z
- #define disable_X() NOOP
- #define disable_Y() NOOP
- #define disable_Z() NOOP
- #if EXTRUDERS >= 1
- #undef disable_E1
- #define disable_E1() NOOP
- #if EXTRUDERS >= 2
- #undef disable_E2
- #define disable_E2() NOOP
- #if EXTRUDERS >= 3
- #undef disable_E3
- #define disable_E3() NOOP
- #if EXTRUDERS >= 4
- #undef disable_E4
- #define disable_E4() NOOP
- #endif // EXTRUDERS >= 4
- #endif // EXTRUDERS >= 3
- #endif // EXTRUDERS >= 2
- #endif // EXTRUDERS >= 1
- #endif // HANGPRINTER
- #if ENABLED(G38_PROBE_TARGET)
- extern bool G38_move, // flag to tell the interrupt handler that a G38 command is being run
- G38_endstop_hit; // flag from the interrupt handler to indicate if the endstop went active
- #endif
- void enable_all_steppers();
- void disable_e_stepper(const uint8_t e);
- void disable_e_steppers();
- void disable_all_steppers();
- void sync_plan_position();
- void sync_plan_position_e();
- #if IS_KINEMATIC
- void sync_plan_position_kinematic();
- #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
- #else
- #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
- #endif
- void flush_and_request_resend();
- void ok_to_send();
- void kill(const char*);
- void quickstop_stepper();
- extern uint8_t marlin_debug_flags;
- #define DEBUGGING(F) (marlin_debug_flags & (DEBUG_## F))
- extern bool Running;
- inline bool IsRunning() { return Running; }
- inline bool IsStopped() { return !Running; }
- bool enqueue_and_echo_command(const char* cmd); // Add a single command to the end of the buffer. Return false on failure.
- void enqueue_and_echo_commands_P(const char * const cmd); // Set one or more commands to be prioritized over the next Serial/SD command.
- void clear_command_queue();
- #if ENABLED(M100_FREE_MEMORY_WATCHER) || ENABLED(POWER_LOSS_RECOVERY)
- extern char command_queue[BUFSIZE][MAX_CMD_SIZE];
- #endif
- #define HAS_LCD_QUEUE_NOW (ENABLED(MALYAN_LCD) || (ENABLED(ULTIPANEL) && (ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(PID_AUTOTUNE_MENU) || ENABLED(ADVANCED_PAUSE_FEATURE))))
- #define HAS_QUEUE_NOW (ENABLED(SDSUPPORT) || HAS_LCD_QUEUE_NOW)
- #if HAS_QUEUE_NOW
- // Return only when commands are actually enqueued
- void enqueue_and_echo_command_now(const char* cmd);
- #if HAS_LCD_QUEUE_NOW
- void enqueue_and_echo_commands_now_P(const char * const cmd);
- #endif
- #endif
- extern millis_t previous_move_ms;
- inline void reset_stepper_timeout() { previous_move_ms = millis(); }
- /**
- * Feedrate scaling and conversion
- */
- extern float feedrate_mm_s;
- extern int16_t feedrate_percentage;
- #define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01f)
- extern bool axis_relative_modes[XYZE];
- extern uint8_t axis_homed, axis_known_position;
- constexpr uint8_t xyz_bits = _BV(X_AXIS) | _BV(Y_AXIS) | _BV(Z_AXIS);
- FORCE_INLINE bool all_axes_homed() { return (axis_homed & xyz_bits) == xyz_bits; }
- FORCE_INLINE bool all_axes_known() { return (axis_known_position & xyz_bits) == xyz_bits; }
- extern volatile bool wait_for_heatup;
- #if HAS_RESUME_CONTINUE
- extern volatile bool wait_for_user;
- #endif
- #if HAS_AUTO_REPORTING || ENABLED(HOST_KEEPALIVE_FEATURE)
- extern bool suspend_auto_report;
- #endif
- extern float current_position[XYZE], destination[XYZE];
- /**
- * Workspace offsets
- */
- #if HAS_WORKSPACE_OFFSET
- #if HAS_HOME_OFFSET
- extern float home_offset[XYZ];
- #endif
- #if HAS_POSITION_SHIFT
- extern float position_shift[XYZ];
- #endif
- #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
- extern float workspace_offset[XYZ];
- #define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS]
- #elif HAS_HOME_OFFSET
- #define WORKSPACE_OFFSET(AXIS) home_offset[AXIS]
- #elif HAS_POSITION_SHIFT
- #define WORKSPACE_OFFSET(AXIS) position_shift[AXIS]
- #endif
- #define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS))
- #define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS))
- #else
- #define NATIVE_TO_LOGICAL(POS, AXIS) (POS)
- #define LOGICAL_TO_NATIVE(POS, AXIS) (POS)
- #endif
- #define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS)
- #define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS)
- #define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS)
- #define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS)
- #define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS)
- #define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS)
- // Hotend Offsets
- #if HOTENDS > 1
- extern float hotend_offset[XYZ][HOTENDS];
- #endif
- // Software Endstops
- extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];
- #if HAS_SOFTWARE_ENDSTOPS
- extern bool soft_endstops_enabled;
- void clamp_to_software_endstops(float target[XYZ]);
- #else
- #define soft_endstops_enabled false
- #define clamp_to_software_endstops(x) NOOP
- #endif
- #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
- void update_software_endstops(const AxisEnum axis);
- #endif
- #define MAX_COORDINATE_SYSTEMS 9
- #if ENABLED(CNC_COORDINATE_SYSTEMS)
- extern float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
- bool select_coordinate_system(const int8_t _new);
- #endif
- void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
- void home_all_axes();
- void report_current_position();
- #if IS_KINEMATIC
- #if ENABLED(HANGPRINTER)
- extern float line_lengths[ABCD];
- #else
- extern float delta[ABC];
- #endif
- void inverse_kinematics(const float raw[XYZ]);
- #endif
- #if ENABLED(DELTA)
- extern float delta_height,
- delta_endstop_adj[ABC],
- delta_radius,
- delta_tower_angle_trim[ABC],
- delta_tower[ABC][2],
- delta_diagonal_rod,
- delta_calibration_radius,
- delta_diagonal_rod_2_tower[ABC],
- delta_segments_per_second,
- delta_clip_start_height;
- void recalc_delta_settings();
- float delta_safe_distance_from_top();
- // Macro to obtain the Z position of an individual tower
- #define DELTA_Z(V,T) V[Z_AXIS] + SQRT( \
- delta_diagonal_rod_2_tower[T] - HYPOT2( \
- delta_tower[T][X_AXIS] - V[X_AXIS], \
- delta_tower[T][Y_AXIS] - V[Y_AXIS] \
- ) \
- )
- #define DELTA_IK(V) do { \
- delta[A_AXIS] = DELTA_Z(V, A_AXIS); \
- delta[B_AXIS] = DELTA_Z(V, B_AXIS); \
- delta[C_AXIS] = DELTA_Z(V, C_AXIS); \
- }while(0)
- #elif ENABLED(HANGPRINTER)
- // Don't collect anchor positions in array because there are no A_x, D_x or D_y
- extern float anchor_A_y,
- anchor_A_z,
- anchor_B_x,
- anchor_B_y,
- anchor_B_z,
- anchor_C_x,
- anchor_C_y,
- anchor_C_z,
- anchor_D_z,
- delta_segments_per_second,
- line_lengths_origin[ABCD];
- void recalc_hangprinter_settings();
- #define HANGPRINTER_IK(V) do { \
- line_lengths[A_AXIS] = SQRT(sq(anchor_A_z - V[Z_AXIS]) \
- + sq(anchor_A_y - V[Y_AXIS]) \
- + sq( V[X_AXIS])); \
- line_lengths[B_AXIS] = SQRT(sq(anchor_B_z - V[Z_AXIS]) \
- + sq(anchor_B_y - V[Y_AXIS]) \
- + sq(anchor_B_x - V[X_AXIS])); \
- line_lengths[C_AXIS] = SQRT(sq(anchor_C_z - V[Z_AXIS]) \
- + sq(anchor_C_y - V[Y_AXIS]) \
- + sq(anchor_C_x - V[X_AXIS])); \
- line_lengths[D_AXIS] = SQRT(sq( V[X_AXIS]) \
- + sq( V[Y_AXIS]) \
- + sq(anchor_D_z - V[Z_AXIS])); \
- }while(0)
- // Inverse kinematics at origin
- #define HANGPRINTER_IK_ORIGIN(LL) do { \
- LL[A_AXIS] = SQRT(sq(anchor_A_z) \
- + sq(anchor_A_y)); \
- LL[B_AXIS] = SQRT(sq(anchor_B_z) \
- + sq(anchor_B_y) \
- + sq(anchor_B_x)); \
- LL[C_AXIS] = SQRT(sq(anchor_C_z) \
- + sq(anchor_C_y) \
- + sq(anchor_C_x)); \
- LL[D_AXIS] = anchor_D_z; \
- }while(0)
- #elif IS_SCARA
- void forward_kinematics_SCARA(const float &a, const float &b);
- #endif
- #if ENABLED(G26_MESH_VALIDATION)
- extern bool g26_debug_flag;
- #elif ENABLED(AUTO_BED_LEVELING_UBL)
- constexpr bool g26_debug_flag = false;
- #endif
- #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
- #define _GET_MESH_X(I) (bilinear_start[X_AXIS] + (I) * bilinear_grid_spacing[X_AXIS])
- #define _GET_MESH_Y(J) (bilinear_start[Y_AXIS] + (J) * bilinear_grid_spacing[Y_AXIS])
- #elif ENABLED(AUTO_BED_LEVELING_UBL)
- #define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
- #define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
- #elif ENABLED(MESH_BED_LEVELING)
- #define _GET_MESH_X(I) mbl.index_to_xpos[I]
- #define _GET_MESH_Y(J) mbl.index_to_ypos[J]
- #endif
- #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
- extern int bilinear_grid_spacing[2], bilinear_start[2];
- extern float bilinear_grid_factor[2],
- z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
- float bilinear_z_offset(const float raw[XYZ]);
- #endif
- #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
- typedef float (*element_2d_fn)(const uint8_t, const uint8_t);
- void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, const element_2d_fn fn);
- #endif
- #if HAS_LEVELING
- bool leveling_is_valid();
- void set_bed_leveling_enabled(const bool enable=true);
- void reset_bed_level();
- #endif
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- void set_z_fade_height(const float zfh, const bool do_report=true);
- #endif
- #if HAS_BED_PROBE
- extern float zprobe_zoffset;
- bool set_probe_deployed(const bool deploy);
- #ifdef Z_AFTER_PROBING
- void move_z_after_probing();
- #endif
- enum ProbePtRaise : unsigned char {
- PROBE_PT_NONE, // No raise or stow after run_z_probe
- PROBE_PT_STOW, // Do a complete stow after run_z_probe
- PROBE_PT_RAISE, // Raise to "between" clearance after run_z_probe
- PROBE_PT_BIG_RAISE // Raise to big clearance after run_z_probe
- };
- float probe_pt(const float &rx, const float &ry, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true);
- #define DEPLOY_PROBE() set_probe_deployed(true)
- #define STOW_PROBE() set_probe_deployed(false)
- #else
- #define DEPLOY_PROBE()
- #define STOW_PROBE()
- #endif
- #if ENABLED(HOST_KEEPALIVE_FEATURE)
- extern MarlinBusyState busy_state;
- #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
- #else
- #define KEEPALIVE_STATE(n) NOOP
- #endif
- #if FAN_COUNT > 0
- extern int16_t fanSpeeds[FAN_COUNT];
- #if ENABLED(EXTRA_FAN_SPEED)
- extern int16_t old_fanSpeeds[FAN_COUNT],
- new_fanSpeeds[FAN_COUNT];
- #endif
- #if ENABLED(PROBING_FANS_OFF)
- extern bool fans_paused;
- extern int16_t paused_fanSpeeds[FAN_COUNT];
- #endif
- #endif
- #if ENABLED(USE_CONTROLLER_FAN)
- extern int controllerFanSpeed;
- #endif
- #if ENABLED(BARICUDA)
- extern uint8_t baricuda_valve_pressure, baricuda_e_to_p_pressure;
- #endif
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- extern bool filament_sensor; // Flag that filament sensor readings should control extrusion
- extern float filament_width_nominal, // Theoretical filament diameter i.e., 3.00 or 1.75
- filament_width_meas; // Measured filament diameter
- extern uint8_t meas_delay_cm; // Delay distance
- extern int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1], // Ring buffer to delay measurement
- filwidth_delay_index[2]; // Ring buffer indexes. Used by planner, temperature, and main code
- #endif
- #if ENABLED(ADVANCED_PAUSE_FEATURE)
- extern int8_t did_pause_print;
- extern AdvancedPauseMenuResponse advanced_pause_menu_response;
- extern float filament_change_unload_length[EXTRUDERS],
- filament_change_load_length[EXTRUDERS];
- #endif
- #if HAS_POWER_SWITCH
- extern bool powersupply_on;
- #define PSU_PIN_ON() do{ OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); powersupply_on = true; }while(0)
- #define PSU_PIN_OFF() do{ OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP); powersupply_on = false; }while(0)
- #endif
- // Handling multiple extruders pins
- extern uint8_t active_extruder;
- #if ENABLED(MIXING_EXTRUDER)
- extern float mixing_factor[MIXING_STEPPERS];
- #endif
- inline void set_current_from_destination() { COPY(current_position, destination); }
- inline void set_destination_from_current() { COPY(destination, current_position); }
- void prepare_move_to_destination();
- /**
- * Blocking movement and shorthand functions
- */
- void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s=0);
- void do_blocking_move_to_x(const float &rx, const float &fr_mm_s=0);
- void do_blocking_move_to_z(const float &rz, const float &fr_mm_s=0);
- void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s=0);
- #if ENABLED(ARC_SUPPORT)
- void plan_arc(const float(&cart)[XYZE], const float(&offset)[2], const bool clockwise);
- #endif
- #define HAS_AXIS_UNHOMED_ERR ( \
- ENABLED(Z_PROBE_ALLEN_KEY) \
- || ENABLED(Z_PROBE_SLED) \
- || HAS_PROBING_PROCEDURE \
- || HOTENDS > 1 \
- || ENABLED(NOZZLE_CLEAN_FEATURE) \
- || ENABLED(NOZZLE_PARK_FEATURE) \
- || (ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(HOME_BEFORE_FILAMENT_CHANGE)) \
- || HAS_M206_COMMAND \
- ) || ENABLED(NO_MOTION_BEFORE_HOMING)
- #if HAS_AXIS_UNHOMED_ERR
- bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true);
- #endif
- /**
- * position_is_reachable family of functions
- */
- #if IS_KINEMATIC // (DELTA or SCARA)
- #if IS_SCARA
- extern const float L1, L2;
- #endif
- // Return true if the given point is within the printable area
- inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) {
- #if ENABLED(DELTA)
- return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset);
- #elif ENABLED(HANGPRINTER)
- // TODO: This is over simplified. Hangprinter's build volume is _not_ cylindrical.
- return HYPOT2(rx, ry) <= sq(HANGPRINTER_PRINTABLE_RADIUS - inset);
- #elif IS_SCARA
- const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
- return (
- R2 <= sq(L1 + L2) - inset
- #if MIDDLE_DEAD_ZONE_R > 0
- && R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
- #endif
- );
- #endif
- }
- #if HAS_BED_PROBE
- // Return true if the both nozzle and the probe can reach the given point.
- // Note: This won't work on SCARA since the probe offset rotates with the arm.
- inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
- return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER))
- && position_is_reachable(rx, ry, ABS(MIN_PROBE_EDGE));
- }
- #endif
- #else // CARTESIAN
- // Return true if the given position is within the machine bounds.
- inline bool position_is_reachable(const float &rx, const float &ry) {
- // Add 0.001 margin to deal with float imprecision
- return WITHIN(rx, X_MIN_POS - 0.001f, X_MAX_POS + 0.001f)
- && WITHIN(ry, Y_MIN_POS - 0.001f, Y_MAX_POS + 0.001f);
- }
- #if HAS_BED_PROBE
- /**
- * Return whether the given position is within the bed, and whether the nozzle
- * can reach the position required to put the probe at the given position.
- *
- * Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the
- * nozzle must be be able to reach +10,-10.
- */
- inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
- return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER))
- && WITHIN(rx, MIN_PROBE_X - 0.001f, MAX_PROBE_X + 0.001f)
- && WITHIN(ry, MIN_PROBE_Y - 0.001f, MAX_PROBE_Y + 0.001f);
- }
- #endif
- #endif // CARTESIAN
- #if !HAS_BED_PROBE
- FORCE_INLINE bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx, ry); }
- #endif
- #endif // MARLIN_H
|