ubl.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #ifndef UNIFIED_BED_LEVELING_H
  23. #define UNIFIED_BED_LEVELING_H
  24. #include "MarlinConfig.h"
  25. //#define UBL_DEVEL_DEBUGGING
  26. #include "Marlin.h"
  27. #include "planner.h"
  28. #include "math.h"
  29. #include "configuration_store.h"
  30. #define UBL_VERSION "1.01"
  31. #define UBL_OK false
  32. #define UBL_ERR true
  33. #define USE_NOZZLE_AS_REFERENCE 0
  34. #define USE_PROBE_AS_REFERENCE 1
  35. // ubl_motion.cpp
  36. #if ENABLED(UBL_DEVEL_DEBUGGING)
  37. void debug_current_and_destination(const char * const title);
  38. #else
  39. FORCE_INLINE void debug_current_and_destination(const char * const title) { UNUSED(title); }
  40. #endif
  41. // ubl_G29.cpp
  42. enum MeshPointType : char { INVALID, REAL, SET_IN_BITMAP };
  43. // External references
  44. char *ftostr43sign(const float&, char);
  45. extern uint8_t ubl_cnt;
  46. ///////////////////////////////////////////////////////////////////////////////////////////////////////
  47. #if ENABLED(ULTRA_LCD)
  48. void lcd_quick_feedback(const bool clear_buttons);
  49. #endif
  50. #define MESH_X_DIST (float(MESH_MAX_X - (MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
  51. #define MESH_Y_DIST (float(MESH_MAX_Y - (MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))
  52. class unified_bed_leveling {
  53. private:
  54. static int g29_verbose_level,
  55. g29_phase_value,
  56. g29_repetition_cnt,
  57. g29_storage_slot,
  58. g29_map_type;
  59. static bool g29_c_flag, g29_x_flag, g29_y_flag;
  60. static float g29_x_pos, g29_y_pos,
  61. g29_card_thickness,
  62. g29_constant;
  63. #if HAS_BED_PROBE
  64. static int g29_grid_size;
  65. #endif
  66. #if ENABLED(NEWPANEL)
  67. static void move_z_with_encoder(const float &multiplier);
  68. static float measure_point_with_encoder();
  69. static float measure_business_card_thickness(float in_height);
  70. static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool) _O0;
  71. static void fine_tune_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map) _O0;
  72. #endif
  73. static bool g29_parameter_parsing() _O0;
  74. static void shift_mesh_height();
  75. static void probe_entire_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) _O0;
  76. static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
  77. static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
  78. static void g29_what_command();
  79. static void g29_eeprom_dump();
  80. static void g29_compare_current_mesh_to_stored_mesh();
  81. static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
  82. static void smart_fill_mesh();
  83. public:
  84. static void echo_name();
  85. static void report_current_mesh();
  86. static void report_state();
  87. static void save_ubl_active_state_and_disable();
  88. static void restore_ubl_active_state_and_leave();
  89. static void display_map(const int) _O0;
  90. static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, uint16_t[16]) _O0;
  91. static mesh_index_pair find_furthest_invalid_mesh_point() _O0;
  92. static void reset();
  93. static void invalidate();
  94. static void set_all_mesh_points_to_value(const float value);
  95. static void adjust_mesh_to_mean(const bool cflag, const float value);
  96. static bool sanity_check();
  97. static void G29() _O0; // O0 for no optimization
  98. static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
  99. static int8_t storage_slot;
  100. static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  101. // 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
  102. // until determinism prevails
  103. static constexpr float _mesh_index_to_xpos[16] PROGMEM = {
  104. MESH_MIN_X + 0 * (MESH_X_DIST), MESH_MIN_X + 1 * (MESH_X_DIST),
  105. MESH_MIN_X + 2 * (MESH_X_DIST), MESH_MIN_X + 3 * (MESH_X_DIST),
  106. MESH_MIN_X + 4 * (MESH_X_DIST), MESH_MIN_X + 5 * (MESH_X_DIST),
  107. MESH_MIN_X + 6 * (MESH_X_DIST), MESH_MIN_X + 7 * (MESH_X_DIST),
  108. MESH_MIN_X + 8 * (MESH_X_DIST), MESH_MIN_X + 9 * (MESH_X_DIST),
  109. MESH_MIN_X + 10 * (MESH_X_DIST), MESH_MIN_X + 11 * (MESH_X_DIST),
  110. MESH_MIN_X + 12 * (MESH_X_DIST), MESH_MIN_X + 13 * (MESH_X_DIST),
  111. MESH_MIN_X + 14 * (MESH_X_DIST), MESH_MIN_X + 15 * (MESH_X_DIST)
  112. };
  113. static constexpr float _mesh_index_to_ypos[16] PROGMEM = {
  114. MESH_MIN_Y + 0 * (MESH_Y_DIST), MESH_MIN_Y + 1 * (MESH_Y_DIST),
  115. MESH_MIN_Y + 2 * (MESH_Y_DIST), MESH_MIN_Y + 3 * (MESH_Y_DIST),
  116. MESH_MIN_Y + 4 * (MESH_Y_DIST), MESH_MIN_Y + 5 * (MESH_Y_DIST),
  117. MESH_MIN_Y + 6 * (MESH_Y_DIST), MESH_MIN_Y + 7 * (MESH_Y_DIST),
  118. MESH_MIN_Y + 8 * (MESH_Y_DIST), MESH_MIN_Y + 9 * (MESH_Y_DIST),
  119. MESH_MIN_Y + 10 * (MESH_Y_DIST), MESH_MIN_Y + 11 * (MESH_Y_DIST),
  120. MESH_MIN_Y + 12 * (MESH_Y_DIST), MESH_MIN_Y + 13 * (MESH_Y_DIST),
  121. MESH_MIN_Y + 14 * (MESH_Y_DIST), MESH_MIN_Y + 15 * (MESH_Y_DIST)
  122. };
  123. #if ENABLED(ULTIPANEL)
  124. static bool lcd_map_control;
  125. #endif
  126. static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
  127. unified_bed_leveling();
  128. FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
  129. static int8_t get_cell_index_x(const float &x) {
  130. const int8_t cx = (x - (MESH_MIN_X)) * (1.0f / (MESH_X_DIST));
  131. return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
  132. } // position. But with this defined this way, it is possible
  133. // to extrapolate off of this point even further out. Probably
  134. // that is OK because something else should be keeping that from
  135. // happening and should not be worried about at this level.
  136. static int8_t get_cell_index_y(const float &y) {
  137. const int8_t cy = (y - (MESH_MIN_Y)) * (1.0f / (MESH_Y_DIST));
  138. return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
  139. } // position. But with this defined this way, it is possible
  140. // to extrapolate off of this point even further out. Probably
  141. // that is OK because something else should be keeping that from
  142. // happening and should not be worried about at this level.
  143. static int8_t find_closest_x_index(const float &x) {
  144. const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5f) * (1.0f / (MESH_X_DIST));
  145. return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
  146. }
  147. static int8_t find_closest_y_index(const float &y) {
  148. const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5f) * (1.0f / (MESH_Y_DIST));
  149. return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
  150. }
  151. /**
  152. * z2 --|
  153. * z0 | |
  154. * | | + (z2-z1)
  155. * z1 | | |
  156. * ---+-------------+--------+-- --|
  157. * a1 a0 a2
  158. * |<---delta_a---------->|
  159. *
  160. * calc_z0 is the basis for all the Mesh Based correction. It is used to
  161. * find the expected Z Height at a position between two known Z-Height locations.
  162. *
  163. * It is fairly expensive with its 4 floating point additions and 2 floating point
  164. * multiplications.
  165. */
  166. FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
  167. return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
  168. }
  169. /**
  170. * z_correction_for_x_on_horizontal_mesh_line is an optimization for
  171. * the case where the printer is making a vertical line that only crosses horizontal mesh lines.
  172. */
  173. inline static float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) {
  174. if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
  175. #if ENABLED(DEBUG_LEVELING_FEATURE)
  176. if (DEBUGGING(LEVELING)) {
  177. serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1_i") : PSTR("yi") );
  178. SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(rx0=", rx0);
  179. SERIAL_ECHOPAIR(",x1_i=", x1_i);
  180. SERIAL_ECHOPAIR(",yi=", yi);
  181. SERIAL_CHAR(')');
  182. SERIAL_EOL();
  183. }
  184. #endif
  185. // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN.
  186. return (
  187. #ifdef UBL_Z_RAISE_WHEN_OFF_MESH
  188. UBL_Z_RAISE_WHEN_OFF_MESH
  189. #else
  190. NAN
  191. #endif
  192. );
  193. }
  194. const float xratio = (rx0 - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)),
  195. z1 = z_values[x1_i][yi];
  196. return z1 + xratio * (z_values[MIN(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array
  197. // If it is, it is clamped to the last element of the
  198. // z_values[][] array and no correction is applied.
  199. }
  200. //
  201. // See comments above for z_correction_for_x_on_horizontal_mesh_line
  202. //
  203. inline static float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) {
  204. if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
  205. #if ENABLED(DEBUG_LEVELING_FEATURE)
  206. if (DEBUGGING(LEVELING)) {
  207. serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("y1_i") );
  208. SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ry0=", ry0);
  209. SERIAL_ECHOPAIR(", xi=", xi);
  210. SERIAL_ECHOPAIR(", y1_i=", y1_i);
  211. SERIAL_CHAR(')');
  212. SERIAL_EOL();
  213. }
  214. #endif
  215. // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN.
  216. return (
  217. #ifdef UBL_Z_RAISE_WHEN_OFF_MESH
  218. UBL_Z_RAISE_WHEN_OFF_MESH
  219. #else
  220. NAN
  221. #endif
  222. );
  223. }
  224. const float yratio = (ry0 - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)),
  225. z1 = z_values[xi][y1_i];
  226. return z1 + yratio * (z_values[xi][MIN(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array
  227. // If it is, it is clamped to the last element of the
  228. // z_values[][] array and no correction is applied.
  229. }
  230. /**
  231. * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
  232. * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
  233. * Z-Height at both ends. Then it does a linear interpolation of these heights based
  234. * on the Y position within the cell.
  235. */
  236. static float get_z_correction(const float &rx0, const float &ry0) {
  237. const int8_t cx = get_cell_index_x(rx0),
  238. cy = get_cell_index_y(ry0); // return values are clamped
  239. /**
  240. * Check if the requested location is off the mesh. If so, and
  241. * UBL_Z_RAISE_WHEN_OFF_MESH is specified, that value is returned.
  242. */
  243. #ifdef UBL_Z_RAISE_WHEN_OFF_MESH
  244. if (!WITHIN(rx0, MESH_MIN_X, MESH_MAX_X) || !WITHIN(ry0, MESH_MIN_Y, MESH_MAX_Y))
  245. return UBL_Z_RAISE_WHEN_OFF_MESH;
  246. #endif
  247. const float z1 = calc_z0(rx0,
  248. mesh_index_to_xpos(cx), z_values[cx][cy],
  249. mesh_index_to_xpos(cx + 1), z_values[MIN(cx, GRID_MAX_POINTS_X - 2) + 1][cy]);
  250. const float z2 = calc_z0(rx0,
  251. mesh_index_to_xpos(cx), z_values[cx][MIN(cy, GRID_MAX_POINTS_Y - 2) + 1],
  252. mesh_index_to_xpos(cx + 1), z_values[MIN(cx, GRID_MAX_POINTS_X - 2) + 1][MIN(cy, GRID_MAX_POINTS_Y - 2) + 1]);
  253. float z0 = calc_z0(ry0,
  254. mesh_index_to_ypos(cy), z1,
  255. mesh_index_to_ypos(cy + 1), z2);
  256. #if ENABLED(DEBUG_LEVELING_FEATURE)
  257. if (DEBUGGING(MESH_ADJUST)) {
  258. SERIAL_ECHOPAIR(" raw get_z_correction(", rx0);
  259. SERIAL_CHAR(',');
  260. SERIAL_ECHO(ry0);
  261. SERIAL_ECHOPGM(") = ");
  262. SERIAL_ECHO_F(z0, 6);
  263. }
  264. #endif
  265. #if ENABLED(DEBUG_LEVELING_FEATURE)
  266. if (DEBUGGING(MESH_ADJUST)) {
  267. SERIAL_ECHOPGM(" >>>---> ");
  268. SERIAL_ECHO_F(z0, 6);
  269. SERIAL_EOL();
  270. }
  271. #endif
  272. if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
  273. z0 = 0.0; // in ubl.z_values[][] and propagate through the
  274. // calculations. If our correction is NAN, we throw it out
  275. // because part of the Mesh is undefined and we don't have the
  276. // information we need to complete the height correction.
  277. #if ENABLED(DEBUG_LEVELING_FEATURE)
  278. if (DEBUGGING(MESH_ADJUST)) {
  279. SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", rx0);
  280. SERIAL_CHAR(',');
  281. SERIAL_ECHO(ry0);
  282. SERIAL_CHAR(')');
  283. SERIAL_EOL();
  284. }
  285. #endif
  286. }
  287. return z0;
  288. }
  289. FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) {
  290. return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : MESH_MIN_X + i * (MESH_X_DIST);
  291. }
  292. FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) {
  293. return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST);
  294. }
  295. #if UBL_SEGMENTED
  296. static bool prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate);
  297. #else
  298. static void line_to_destination_cartesian(const float &fr, const uint8_t e);
  299. #endif
  300. inline static bool mesh_is_valid() {
  301. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  302. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  303. if (isnan(z_values[x][y])) return false;
  304. return true;
  305. }
  306. }; // class unified_bed_leveling
  307. extern unified_bed_leveling ubl;
  308. FORCE_INLINE void gcode_G29() { ubl.G29(); }
  309. #endif // UNIFIED_BED_LEVELING_H