stepper.h 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
  24. * Derived from Grbl
  25. *
  26. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  27. *
  28. * Grbl is free software: you can redistribute it and/or modify
  29. * it under the terms of the GNU General Public License as published by
  30. * the Free Software Foundation, either version 3 of the License, or
  31. * (at your option) any later version.
  32. *
  33. * Grbl is distributed in the hope that it will be useful,
  34. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  35. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  36. * GNU General Public License for more details.
  37. *
  38. * You should have received a copy of the GNU General Public License
  39. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  40. */
  41. #ifndef STEPPER_H
  42. #define STEPPER_H
  43. #include "MarlinConfig.h"
  44. // Disable multiple steps per ISR
  45. //#define DISABLE_MULTI_STEPPING
  46. //
  47. // Estimate the amount of time the Stepper ISR will take to execute
  48. //
  49. #ifndef MINIMUM_STEPPER_PULSE
  50. #define MINIMUM_STEPPER_PULSE 0UL
  51. #endif
  52. #ifndef MAXIMUM_STEPPER_RATE
  53. #if MINIMUM_STEPPER_PULSE
  54. #define MAXIMUM_STEPPER_RATE (1000000UL / (2UL * (unsigned long)(MINIMUM_STEPPER_PULSE)))
  55. #else
  56. #define MAXIMUM_STEPPER_RATE 500000UL
  57. #endif
  58. #endif
  59. // The base ISR takes 752 cycles
  60. #define ISR_BASE_CYCLES 752UL
  61. // Linear advance base time is 32 cycles
  62. #if ENABLED(LIN_ADVANCE)
  63. #define ISR_LA_BASE_CYCLES 32UL
  64. #else
  65. #define ISR_LA_BASE_CYCLES 0UL
  66. #endif
  67. // S curve interpolation adds 160 cycles
  68. #if ENABLED(S_CURVE_ACCELERATION)
  69. #define ISR_S_CURVE_CYCLES 160UL
  70. #else
  71. #define ISR_S_CURVE_CYCLES 0UL
  72. #endif
  73. // Stepper Loop base cycles
  74. #define ISR_LOOP_BASE_CYCLES 32UL
  75. // To start the step pulse, in the worst case takes
  76. #define ISR_START_STEPPER_CYCLES 57UL
  77. // And each stepper (start + stop pulse) takes in worst case
  78. #define ISR_STEPPER_CYCLES 88UL
  79. // Add time for each stepper
  80. #ifdef HAS_X_STEP
  81. #define ISR_START_X_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
  82. #define ISR_X_STEPPER_CYCLES ISR_STEPPER_CYCLES
  83. #else
  84. #define ISR_START_X_STEPPER_CYCLES 0UL
  85. #define ISR_X_STEPPER_CYCLES 0UL
  86. #endif
  87. #ifdef HAS_Y_STEP
  88. #define ISR_START_Y_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
  89. #define ISR_Y_STEPPER_CYCLES ISR_STEPPER_CYCLES
  90. #else
  91. #define ISR_START_Y_STEPPER_CYCLES 0UL
  92. #define ISR_Y_STEPPER_CYCLES 0UL
  93. #endif
  94. #ifdef HAS_Z_STEP
  95. #define ISR_START_Z_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
  96. #define ISR_Z_STEPPER_CYCLES ISR_STEPPER_CYCLES
  97. #else
  98. #define ISR_START_Z_STEPPER_CYCLES 0UL
  99. #define ISR_Z_STEPPER_CYCLES 0UL
  100. #endif
  101. // E is always interpolated, even for mixing extruders
  102. #define ISR_START_E_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
  103. #define ISR_E_STEPPER_CYCLES ISR_STEPPER_CYCLES
  104. // If linear advance is disabled, then the loop also handles them
  105. #if DISABLED(LIN_ADVANCE) && ENABLED(MIXING_EXTRUDER)
  106. #define ISR_START_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_START_STEPPER_CYCLES))
  107. #define ISR_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
  108. #else
  109. #define ISR_START_MIXING_STEPPER_CYCLES 0UL
  110. #define ISR_MIXING_STEPPER_CYCLES 0UL
  111. #endif
  112. // Calculate the minimum time to start all stepper pulses in the ISR loop
  113. #define MIN_ISR_START_LOOP_CYCLES (ISR_START_X_STEPPER_CYCLES + ISR_START_Y_STEPPER_CYCLES + ISR_START_Z_STEPPER_CYCLES + ISR_START_E_STEPPER_CYCLES + ISR_START_MIXING_STEPPER_CYCLES)
  114. // And the total minimum loop time, not including the base
  115. #define MIN_ISR_LOOP_CYCLES (ISR_X_STEPPER_CYCLES + ISR_Y_STEPPER_CYCLES + ISR_Z_STEPPER_CYCLES + ISR_E_STEPPER_CYCLES + ISR_MIXING_STEPPER_CYCLES)
  116. // Calculate the minimum MPU cycles needed per pulse to enforce, limited to the max stepper rate
  117. #define _MIN_STEPPER_PULSE_CYCLES(N) MAX((unsigned long)((F_CPU) / (MAXIMUM_STEPPER_RATE)), ((F_CPU) / 500000UL) * (N))
  118. #if MINIMUM_STEPPER_PULSE
  119. #define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES((unsigned long)(MINIMUM_STEPPER_PULSE))
  120. #else
  121. #define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(1UL)
  122. #endif
  123. // Calculate the minimum ticks of the PULSE timer that must elapse with the step pulse enabled
  124. // adding the "start stepper pulse" code section execution cycles to account for that not all
  125. // pulses start at the beginning of the loop, so an extra time must be added to compensate so
  126. // the last generated pulse (usually the extruder stepper) has the right length
  127. #define MIN_PULSE_TICKS (((PULSE_TIMER_TICKS_PER_US) * (unsigned long)(MINIMUM_STEPPER_PULSE)) + ((MIN_ISR_START_LOOP_CYCLES) / (unsigned long)(PULSE_TIMER_PRESCALE)))
  128. // Calculate the extra ticks of the PULSE timer between step pulses
  129. #define ADDED_STEP_TICKS (((MIN_STEPPER_PULSE_CYCLES) / (PULSE_TIMER_PRESCALE)) - (MIN_PULSE_TICKS))
  130. // But the user could be enforcing a minimum time, so the loop time is
  131. #define ISR_LOOP_CYCLES (ISR_LOOP_BASE_CYCLES + MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LOOP_CYCLES))
  132. // If linear advance is enabled, then it is handled separately
  133. #if ENABLED(LIN_ADVANCE)
  134. // Estimate the minimum LA loop time
  135. #if ENABLED(MIXING_EXTRUDER)
  136. #define MIN_ISR_LA_LOOP_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
  137. #else
  138. #define MIN_ISR_LA_LOOP_CYCLES ISR_STEPPER_CYCLES
  139. #endif
  140. // And the real loop time
  141. #define ISR_LA_LOOP_CYCLES MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LA_LOOP_CYCLES)
  142. #else
  143. #define ISR_LA_LOOP_CYCLES 0UL
  144. #endif
  145. // Now estimate the total ISR execution time in cycles given a step per ISR multiplier
  146. #define ISR_EXECUTION_CYCLES(R) (((ISR_BASE_CYCLES + ISR_S_CURVE_CYCLES + (ISR_LOOP_CYCLES) * (R) + ISR_LA_BASE_CYCLES + ISR_LA_LOOP_CYCLES)) / (R))
  147. // The maximum allowable stepping frequency when doing x128-x1 stepping (in Hz)
  148. #define MAX_STEP_ISR_FREQUENCY_128X ((F_CPU) / ISR_EXECUTION_CYCLES(128))
  149. #define MAX_STEP_ISR_FREQUENCY_64X ((F_CPU) / ISR_EXECUTION_CYCLES(64))
  150. #define MAX_STEP_ISR_FREQUENCY_32X ((F_CPU) / ISR_EXECUTION_CYCLES(32))
  151. #define MAX_STEP_ISR_FREQUENCY_16X ((F_CPU) / ISR_EXECUTION_CYCLES(16))
  152. #define MAX_STEP_ISR_FREQUENCY_8X ((F_CPU) / ISR_EXECUTION_CYCLES(8))
  153. #define MAX_STEP_ISR_FREQUENCY_4X ((F_CPU) / ISR_EXECUTION_CYCLES(4))
  154. #define MAX_STEP_ISR_FREQUENCY_2X ((F_CPU) / ISR_EXECUTION_CYCLES(2))
  155. #define MAX_STEP_ISR_FREQUENCY_1X ((F_CPU) / ISR_EXECUTION_CYCLES(1))
  156. // The minimum allowable frequency for step smoothing will be 1/10 of the maximum nominal frequency (in Hz)
  157. #define MIN_STEP_ISR_FREQUENCY MAX_STEP_ISR_FREQUENCY_1X
  158. //
  159. // Stepper class definition
  160. //
  161. #include "planner.h"
  162. #include "speed_lookuptable.h"
  163. #include "stepper_indirection.h"
  164. #include "language.h"
  165. #include "types.h"
  166. // intRes = intIn1 * intIn2 >> 16
  167. // uses:
  168. // r26 to store 0
  169. // r27 to store the byte 1 of the 24 bit result
  170. static FORCE_INLINE uint16_t MultiU16X8toH16(uint8_t charIn1, uint16_t intIn2) {
  171. register uint8_t tmp;
  172. register uint16_t intRes;
  173. __asm__ __volatile__ (
  174. A("clr %[tmp]")
  175. A("mul %[charIn1], %B[intIn2]")
  176. A("movw %A[intRes], r0")
  177. A("mul %[charIn1], %A[intIn2]")
  178. A("add %A[intRes], r1")
  179. A("adc %B[intRes], %[tmp]")
  180. A("lsr r0")
  181. A("adc %A[intRes], %[tmp]")
  182. A("adc %B[intRes], %[tmp]")
  183. A("clr r1")
  184. : [intRes] "=&r" (intRes),
  185. [tmp] "=&r" (tmp)
  186. : [charIn1] "d" (charIn1),
  187. [intIn2] "d" (intIn2)
  188. : "cc"
  189. );
  190. return intRes;
  191. }
  192. class Stepper {
  193. public:
  194. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  195. static bool homing_dual_axis;
  196. #endif
  197. #if HAS_MOTOR_CURRENT_PWM
  198. #ifndef PWM_MOTOR_CURRENT
  199. #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
  200. #endif
  201. static uint32_t motor_current_setting[3];
  202. #endif
  203. private:
  204. static block_t* current_block; // A pointer to the block currently being traced
  205. static uint8_t last_direction_bits, // The next stepping-bits to be output
  206. axis_did_move; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
  207. static bool abort_current_block; // Signals to the stepper that current block should be aborted
  208. #if DISABLED(MIXING_EXTRUDER)
  209. static uint8_t last_moved_extruder; // Last-moved extruder, as set when the last movement was fetched from planner
  210. #endif
  211. #if ENABLED(X_DUAL_ENDSTOPS)
  212. static bool locked_X_motor, locked_X2_motor;
  213. #endif
  214. #if ENABLED(Y_DUAL_ENDSTOPS)
  215. static bool locked_Y_motor, locked_Y2_motor;
  216. #endif
  217. #if ENABLED(Z_DUAL_ENDSTOPS)
  218. static bool locked_Z_motor, locked_Z2_motor;
  219. #endif
  220. static uint32_t acceleration_time, deceleration_time; // time measured in Stepper Timer ticks
  221. static uint8_t steps_per_isr; // Count of steps to perform per Stepper ISR call
  222. #if ENABLED(ADAPTIVE_STEP_SMOOTHING)
  223. static uint8_t oversampling_factor; // Oversampling factor (log2(multiplier)) to increase temporal resolution of axis
  224. #else
  225. static constexpr uint8_t oversampling_factor = 0;
  226. #endif
  227. // Delta error variables for the Bresenham line tracer
  228. static int32_t delta_error[NUM_AXIS];
  229. static uint32_t advance_dividend[NUM_AXIS],
  230. advance_divisor,
  231. step_events_completed, // The number of step events executed in the current block
  232. accelerate_until, // The point from where we need to stop acceleration
  233. decelerate_after, // The point from where we need to start decelerating
  234. step_event_count; // The total event count for the current block
  235. // Mixing extruder mix delta_errors for bresenham tracing
  236. #if ENABLED(MIXING_EXTRUDER)
  237. static int32_t delta_error_m[MIXING_STEPPERS];
  238. static uint32_t advance_dividend_m[MIXING_STEPPERS],
  239. advance_divisor_m;
  240. #define MIXING_STEPPERS_LOOP(VAR) \
  241. for (uint8_t VAR = 0; VAR < MIXING_STEPPERS; VAR++)
  242. #else
  243. static int8_t active_extruder; // Active extruder
  244. #endif
  245. #if ENABLED(S_CURVE_ACCELERATION)
  246. static int32_t bezier_A, // A coefficient in Bézier speed curve
  247. bezier_B, // B coefficient in Bézier speed curve
  248. bezier_C; // C coefficient in Bézier speed curve
  249. static uint32_t bezier_F, // F coefficient in Bézier speed curve
  250. bezier_AV; // AV coefficient in Bézier speed curve
  251. static bool A_negative, // If A coefficient was negative
  252. bezier_2nd_half; // If Bézier curve has been initialized or not
  253. #endif
  254. static uint32_t nextMainISR; // time remaining for the next Step ISR
  255. #if ENABLED(LIN_ADVANCE)
  256. static uint32_t nextAdvanceISR, LA_isr_rate;
  257. static uint16_t LA_current_adv_steps, LA_final_adv_steps, LA_max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early".
  258. static int8_t LA_steps;
  259. static bool LA_use_advance_lead;
  260. #endif // LIN_ADVANCE
  261. static int32_t ticks_nominal;
  262. #if DISABLED(S_CURVE_ACCELERATION)
  263. static uint32_t acc_step_rate; // needed for deceleration start point
  264. #endif
  265. static volatile int32_t endstops_trigsteps[XYZ];
  266. //
  267. // Positions of stepper motors, in step units
  268. //
  269. static volatile int32_t count_position[NUM_AXIS];
  270. //
  271. // Current direction of stepper motors (+1 or -1)
  272. //
  273. static int8_t count_direction[NUM_AXIS];
  274. public:
  275. //
  276. // Constructor / initializer
  277. //
  278. Stepper() { };
  279. // Initialize stepper hardware
  280. static void init();
  281. // Interrupt Service Routines
  282. // The ISR scheduler
  283. static void isr();
  284. // The stepper pulse phase ISR
  285. static void stepper_pulse_phase_isr();
  286. // The stepper block processing phase ISR
  287. static uint32_t stepper_block_phase_isr();
  288. #if ENABLED(LIN_ADVANCE)
  289. // The Linear advance stepper ISR
  290. static uint32_t advance_isr();
  291. #endif
  292. // Check if the given block is busy or not - Must not be called from ISR contexts
  293. static bool is_block_busy(const block_t* const block);
  294. // Get the position of a stepper, in steps
  295. static int32_t position(const AxisEnum axis);
  296. // Report the positions of the steppers, in steps
  297. static void report_positions();
  298. // The stepper subsystem goes to sleep when it runs out of things to execute. Call this
  299. // to notify the subsystem that it is time to go to work.
  300. static void wake_up();
  301. // Quickly stop all steppers
  302. FORCE_INLINE static void quick_stop() { abort_current_block = true; }
  303. // The direction of a single motor
  304. FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); }
  305. // The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.
  306. FORCE_INLINE static bool axis_is_moving(const AxisEnum axis) { return TEST(axis_did_move, axis); }
  307. // The extruder associated to the last movement
  308. FORCE_INLINE static uint8_t movement_extruder() {
  309. return
  310. #if ENABLED(MIXING_EXTRUDER)
  311. 0
  312. #else
  313. last_moved_extruder
  314. #endif
  315. ;
  316. }
  317. // Handle a triggered endstop
  318. static void endstop_triggered(const AxisEnum axis);
  319. // Triggered position of an axis in steps
  320. static int32_t triggered_position(const AxisEnum axis);
  321. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  322. static void digitalPotWrite(const int16_t address, const int16_t value);
  323. static void digipot_current(const uint8_t driver, const int16_t current);
  324. #endif
  325. #if HAS_MICROSTEPS
  326. static void microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2);
  327. static void microstep_mode(const uint8_t driver, const uint8_t stepping);
  328. static void microstep_readings();
  329. #endif
  330. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  331. FORCE_INLINE static void set_homing_dual_axis(const bool state) { homing_dual_axis = state; }
  332. #endif
  333. #if ENABLED(X_DUAL_ENDSTOPS)
  334. FORCE_INLINE static void set_x_lock(const bool state) { locked_X_motor = state; }
  335. FORCE_INLINE static void set_x2_lock(const bool state) { locked_X2_motor = state; }
  336. #endif
  337. #if ENABLED(Y_DUAL_ENDSTOPS)
  338. FORCE_INLINE static void set_y_lock(const bool state) { locked_Y_motor = state; }
  339. FORCE_INLINE static void set_y2_lock(const bool state) { locked_Y2_motor = state; }
  340. #endif
  341. #if ENABLED(Z_DUAL_ENDSTOPS)
  342. FORCE_INLINE static void set_z_lock(const bool state) { locked_Z_motor = state; }
  343. FORCE_INLINE static void set_z2_lock(const bool state) { locked_Z2_motor = state; }
  344. #endif
  345. #if ENABLED(BABYSTEPPING)
  346. static void babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
  347. #endif
  348. #if HAS_MOTOR_CURRENT_PWM
  349. static void refresh_motor_power();
  350. #endif
  351. // Set the current position in steps
  352. inline static void set_position(const int32_t &a, const int32_t &b, const int32_t &c
  353. #if ENABLED(HANGPRINTER)
  354. , const int32_t &d
  355. #endif
  356. , const int32_t &e
  357. ) {
  358. planner.synchronize();
  359. const bool was_enabled = STEPPER_ISR_ENABLED();
  360. if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
  361. _set_position(a, b, c
  362. #if ENABLED(HANGPRINTER)
  363. , d
  364. #endif
  365. , e
  366. );
  367. if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
  368. }
  369. inline static void set_position(const AxisEnum a, const int32_t &v) {
  370. planner.synchronize();
  371. const bool was_enabled = STEPPER_ISR_ENABLED();
  372. if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
  373. count_position[a] = v;
  374. if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
  375. }
  376. private:
  377. // Set the current position in steps
  378. static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c
  379. #if ENABLED(HANGPRINTER)
  380. , const int32_t &d
  381. #endif
  382. , const int32_t &e
  383. );
  384. // Set direction bits for all steppers
  385. static void set_directions();
  386. // Allow reset_stepper_drivers to access private set_directions
  387. friend void reset_stepper_drivers();
  388. FORCE_INLINE static uint32_t calc_timer_interval(uint32_t step_rate, uint8_t scale, uint8_t* loops) {
  389. uint32_t timer;
  390. // Scale the frequency, as requested by the caller
  391. step_rate <<= scale;
  392. uint8_t multistep = 1;
  393. #if DISABLED(DISABLE_MULTI_STEPPING)
  394. // The stepping frequency limits for each multistepping rate
  395. static const uint32_t limit[] PROGMEM = {
  396. ( MAX_STEP_ISR_FREQUENCY_1X ),
  397. ( MAX_STEP_ISR_FREQUENCY_2X >> 1),
  398. ( MAX_STEP_ISR_FREQUENCY_4X >> 2),
  399. ( MAX_STEP_ISR_FREQUENCY_8X >> 3),
  400. ( MAX_STEP_ISR_FREQUENCY_16X >> 4),
  401. ( MAX_STEP_ISR_FREQUENCY_32X >> 5),
  402. ( MAX_STEP_ISR_FREQUENCY_64X >> 6),
  403. (MAX_STEP_ISR_FREQUENCY_128X >> 7)
  404. };
  405. // Select the proper multistepping
  406. uint8_t idx = 0;
  407. while (idx < 7 && step_rate > (uint32_t)pgm_read_dword(&limit[idx])) {
  408. step_rate >>= 1;
  409. multistep <<= 1;
  410. ++idx;
  411. };
  412. #else
  413. NOMORE(step_rate, uint32_t(MAX_STEP_ISR_FREQUENCY_1X));
  414. #endif
  415. *loops = multistep;
  416. constexpr uint32_t min_step_rate = F_CPU / 500000U;
  417. NOLESS(step_rate, min_step_rate);
  418. step_rate -= min_step_rate; // Correct for minimal speed
  419. if (step_rate >= (8 * 256)) { // higher step rate
  420. const uint8_t tmp_step_rate = (step_rate & 0x00FF);
  421. const uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0],
  422. gain = (uint16_t)pgm_read_word_near(table_address + 2);
  423. timer = MultiU16X8toH16(tmp_step_rate, gain);
  424. timer = (uint16_t)pgm_read_word_near(table_address) - timer;
  425. }
  426. else { // lower step rates
  427. uint16_t table_address = (uint16_t)&speed_lookuptable_slow[0][0];
  428. table_address += ((step_rate) >> 1) & 0xFFFC;
  429. timer = (uint16_t)pgm_read_word_near(table_address)
  430. - (((uint16_t)pgm_read_word_near(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3);
  431. }
  432. // (there is no need to limit the timer value here. All limits have been
  433. // applied above, and AVR is able to keep up at 30khz Stepping ISR rate)
  434. return timer;
  435. }
  436. #if ENABLED(S_CURVE_ACCELERATION)
  437. static void _calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av);
  438. static int32_t _eval_bezier_curve(const uint32_t curr_step);
  439. #endif
  440. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  441. static void digipot_init();
  442. #endif
  443. #if HAS_MICROSTEPS
  444. static void microstep_init();
  445. #endif
  446. };
  447. extern Stepper stepper;
  448. #endif // STEPPER_H