123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
- /**
- * MarlinSerial.cpp - Hardware serial library for Wiring
- * Copyright (c) 2006 Nicholas Zambetti. All right reserved.
- *
- * Modified 23 November 2006 by David A. Mellis
- * Modified 28 September 2010 by Mark Sproul
- * Modified 14 February 2016 by Andreas Hardtung (added tx buffer)
- * Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF)
- * Modified 10 June 2018 by Eduardo José Tagle (See #10991)
- */
- // Disable HardwareSerial.cpp to support chips without a UART (Attiny, etc.)
- #include "MarlinConfig.h"
- #if USE_MARLINSERIAL && (defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H))
- #include "MarlinSerial.h"
- #include "Marlin.h"
- struct ring_buffer_r {
- unsigned char buffer[RX_BUFFER_SIZE];
- volatile ring_buffer_pos_t head, tail;
- };
- #if TX_BUFFER_SIZE > 0
- struct ring_buffer_t {
- unsigned char buffer[TX_BUFFER_SIZE];
- volatile uint8_t head, tail;
- };
- #endif
- #if UART_PRESENT(SERIAL_PORT)
- ring_buffer_r rx_buffer = { { 0 }, 0, 0 };
- #if TX_BUFFER_SIZE > 0
- ring_buffer_t tx_buffer = { { 0 }, 0, 0 };
- #endif
- static bool _written;
- #endif
- #if ENABLED(SERIAL_XON_XOFF)
- constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80, // XON / XOFF Character was sent
- XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
- // XON / XOFF character definitions
- constexpr uint8_t XON_CHAR = 17, XOFF_CHAR = 19;
- uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR;
- #endif
- #if ENABLED(SERIAL_STATS_DROPPED_RX)
- uint8_t rx_dropped_bytes = 0;
- #endif
- #if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
- uint8_t rx_buffer_overruns = 0;
- #endif
- #if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
- uint8_t rx_framing_errors = 0;
- #endif
- #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
- ring_buffer_pos_t rx_max_enqueued = 0;
- #endif
- // A SW memory barrier, to ensure GCC does not overoptimize loops
- #define sw_barrier() asm volatile("": : :"memory");
- #if ENABLED(EMERGENCY_PARSER)
- #include "emergency_parser.h"
- #endif
- // "Atomically" read the RX head index value without disabling interrupts:
- // This MUST be called with RX interrupts enabled, and CAN'T be called
- // from the RX ISR itself!
- FORCE_INLINE ring_buffer_pos_t atomic_read_rx_head() {
- #if RX_BUFFER_SIZE > 256
- // Keep reading until 2 consecutive reads return the same value,
- // meaning there was no update in-between caused by an interrupt.
- // This works because serial RX interrupts happen at a slower rate
- // than successive reads of a variable, so 2 consecutive reads with
- // the same value means no interrupt updated it.
- ring_buffer_pos_t vold, vnew = rx_buffer.head;
- sw_barrier();
- do {
- vold = vnew;
- vnew = rx_buffer.head;
- sw_barrier();
- } while (vold != vnew);
- return vnew;
- #else
- // With an 8bit index, reads are always atomic. No need for special handling
- return rx_buffer.head;
- #endif
- }
- #if RX_BUFFER_SIZE > 256
- static volatile bool rx_tail_value_not_stable = false;
- static volatile uint16_t rx_tail_value_backup = 0;
- #endif
- // Set RX tail index, taking into account the RX ISR could interrupt
- // the write to this variable in the middle - So a backup strategy
- // is used to ensure reads of the correct values.
- // -Must NOT be called from the RX ISR -
- FORCE_INLINE void atomic_set_rx_tail(ring_buffer_pos_t value) {
- #if RX_BUFFER_SIZE > 256
- // Store the new value in the backup
- rx_tail_value_backup = value;
- sw_barrier();
- // Flag we are about to change the true value
- rx_tail_value_not_stable = true;
- sw_barrier();
- // Store the new value
- rx_buffer.tail = value;
- sw_barrier();
- // Signal the new value is completely stored into the value
- rx_tail_value_not_stable = false;
- sw_barrier();
- #else
- rx_buffer.tail = value;
- #endif
- }
- // Get the RX tail index, taking into account the read could be
- // interrupting in the middle of the update of that index value
- // -Called from the RX ISR -
- FORCE_INLINE ring_buffer_pos_t atomic_read_rx_tail() {
- #if RX_BUFFER_SIZE > 256
- // If the true index is being modified, return the backup value
- if (rx_tail_value_not_stable) return rx_tail_value_backup;
- #endif
- // The true index is stable, return it
- return rx_buffer.tail;
- }
- // (called with RX interrupts disabled)
- FORCE_INLINE void store_rxd_char() {
- // Get the tail - Nothing can alter its value while this ISR is executing, but there's
- // a chance that this ISR interrupted the main process while it was updating the index.
- // The backup mechanism ensures the correct value is always returned.
- const ring_buffer_pos_t t = atomic_read_rx_tail();
- // Get the head pointer - This ISR is the only one that modifies its value, so it's safe to read here
- ring_buffer_pos_t h = rx_buffer.head;
- // Get the next element
- ring_buffer_pos_t i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
- // This must read the M_UCSRxA register before reading the received byte to detect error causes
- #if ENABLED(SERIAL_STATS_DROPPED_RX)
- if (TEST(M_UCSRxA, M_DORx) && !++rx_dropped_bytes) --rx_dropped_bytes;
- #endif
- #if ENABLED(SERIAL_STATS_RX_BUFFER_OVERRUNS)
- if (TEST(M_UCSRxA, M_DORx) && !++rx_buffer_overruns) --rx_buffer_overruns;
- #endif
- #if ENABLED(SERIAL_STATS_RX_FRAMING_ERRORS)
- if (TEST(M_UCSRxA, M_FEx) && !++rx_framing_errors) --rx_framing_errors;
- #endif
- // Read the character from the USART
- uint8_t c = M_UDRx;
- #if ENABLED(EMERGENCY_PARSER)
- emergency_parser.update(c);
- #endif
- // If the character is to be stored at the index just before the tail
- // (such that the head would advance to the current tail), the RX FIFO is
- // full, so don't write the character or advance the head.
- if (i != t) {
- rx_buffer.buffer[h] = c;
- h = i;
- }
- #if ENABLED(SERIAL_STATS_DROPPED_RX)
- else if (!++rx_dropped_bytes) --rx_dropped_bytes;
- #endif
- #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
- // Calculate count of bytes stored into the RX buffer
- const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
- // Keep track of the maximum count of enqueued bytes
- NOLESS(rx_max_enqueued, rx_count);
- #endif
- #if ENABLED(SERIAL_XON_XOFF)
- // If the last char that was sent was an XON
- if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
- // Bytes stored into the RX buffer
- const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
- // If over 12.5% of RX buffer capacity, send XOFF before running out of
- // RX buffer space .. 325 bytes @ 250kbits/s needed to let the host react
- // and stop sending bytes. This translates to 13mS propagation time.
- if (rx_count >= (RX_BUFFER_SIZE) / 8) {
- // At this point, definitely no TX interrupt was executing, since the TX ISR can't be preempted.
- // Don't enable the TX interrupt here as a means to trigger the XOFF char, because if it happens
- // to be in the middle of trying to disable the RX interrupt in the main program, eventually the
- // enabling of the TX interrupt could be undone. The ONLY reliable thing this can do to ensure
- // the sending of the XOFF char is to send it HERE AND NOW.
- // About to send the XOFF char
- xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
- // Wait until the TX register becomes empty and send it - Here there could be a problem
- // - While waiting for the TX register to empty, the RX register could receive a new
- // character. This must also handle that situation!
- while (!TEST(M_UCSRxA, M_UDREx)) {
- if (TEST(M_UCSRxA,M_RXCx)) {
- // A char arrived while waiting for the TX buffer to be empty - Receive and process it!
- i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
- // Read the character from the USART
- c = M_UDRx;
- #if ENABLED(EMERGENCY_PARSER)
- emergency_parser.update(c);
- #endif
- // If the character is to be stored at the index just before the tail
- // (such that the head would advance to the current tail), the FIFO is
- // full, so don't write the character or advance the head.
- if (i != t) {
- rx_buffer.buffer[h] = c;
- h = i;
- }
- #if ENABLED(SERIAL_STATS_DROPPED_RX)
- else if (!++rx_dropped_bytes) --rx_dropped_bytes;
- #endif
- }
- sw_barrier();
- }
- M_UDRx = XOFF_CHAR;
- // Clear the TXC bit -- "can be cleared by writing a one to its bit
- // location". This makes sure flush() won't return until the bytes
- // actually got written
- SBI(M_UCSRxA, M_TXCx);
- // At this point there could be a race condition between the write() function
- // and this sending of the XOFF char. This interrupt could happen between the
- // wait to be empty TX buffer loop and the actual write of the character. Since
- // the TX buffer is full because it's sending the XOFF char, the only way to be
- // sure the write() function will succeed is to wait for the XOFF char to be
- // completely sent. Since an extra character could be received during the wait
- // it must also be handled!
- while (!TEST(M_UCSRxA, M_UDREx)) {
- if (TEST(M_UCSRxA,M_RXCx)) {
- // A char arrived while waiting for the TX buffer to be empty - Receive and process it!
- i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
- // Read the character from the USART
- c = M_UDRx;
- #if ENABLED(EMERGENCY_PARSER)
- emergency_parser.update(c);
- #endif
- // If the character is to be stored at the index just before the tail
- // (such that the head would advance to the current tail), the FIFO is
- // full, so don't write the character or advance the head.
- if (i != t) {
- rx_buffer.buffer[h] = c;
- h = i;
- }
- #if ENABLED(SERIAL_STATS_DROPPED_RX)
- else if (!++rx_dropped_bytes) --rx_dropped_bytes;
- #endif
- }
- sw_barrier();
- }
- // At this point everything is ready. The write() function won't
- // have any issues writing to the UART TX register if it needs to!
- }
- }
- #endif // SERIAL_XON_XOFF
- // Store the new head value - The main loop will retry until the value is stable
- rx_buffer.head = h;
- }
- #if TX_BUFFER_SIZE > 0
- // (called with TX irqs disabled)
- FORCE_INLINE void _tx_udr_empty_irq(void) {
- // Read positions
- uint8_t t = tx_buffer.tail;
- const uint8_t h = tx_buffer.head;
- #if ENABLED(SERIAL_XON_XOFF)
- // If an XON char is pending to be sent, do it now
- if (xon_xoff_state == XON_CHAR) {
- // Send the character
- M_UDRx = XON_CHAR;
- // clear the TXC bit -- "can be cleared by writing a one to its bit
- // location". This makes sure flush() won't return until the bytes
- // actually got written
- SBI(M_UCSRxA, M_TXCx);
- // Remember we sent it.
- xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
- // If nothing else to transmit, just disable TX interrupts.
- if (h == t) CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
- return;
- }
- #endif
- // If nothing to transmit, just disable TX interrupts. This could
- // happen as the result of the non atomicity of the disabling of RX
- // interrupts that could end reenabling TX interrupts as a side effect.
- if (h == t) {
- CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
- return;
- }
- // There is something to TX, Send the next byte
- const uint8_t c = tx_buffer.buffer[t];
- t = (t + 1) & (TX_BUFFER_SIZE - 1);
- M_UDRx = c;
- tx_buffer.tail = t;
- // Clear the TXC bit (by writing a one to its bit location).
- // Ensures flush() won't return until the bytes are actually written/
- SBI(M_UCSRxA, M_TXCx);
- // Disable interrupts if there is nothing to transmit following this byte
- if (h == t) CBI(M_UCSRxB, M_UDRIEx); // (Non-atomic, could be reenabled by the main program, but eventually this will succeed)
- }
- #ifdef M_USARTx_UDRE_vect
- ISR(M_USARTx_UDRE_vect) { _tx_udr_empty_irq(); }
- #endif
- #endif // TX_BUFFER_SIZE
- #ifdef M_USARTx_RX_vect
- ISR(M_USARTx_RX_vect) { store_rxd_char(); }
- #endif
- // Public Methods
- void MarlinSerial::begin(const long baud) {
- uint16_t baud_setting;
- bool useU2X = true;
- #if F_CPU == 16000000UL && SERIAL_PORT == 0
- // Hard-coded exception for compatibility with the bootloader shipped
- // with the Duemilanove and previous boards, and the firmware on the
- // 8U2 on the Uno and Mega 2560.
- if (baud == 57600) useU2X = false;
- #endif
- if (useU2X) {
- M_UCSRxA = _BV(M_U2Xx);
- baud_setting = (F_CPU / 4 / baud - 1) / 2;
- }
- else {
- M_UCSRxA = 0;
- baud_setting = (F_CPU / 8 / baud - 1) / 2;
- }
- // assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
- M_UBRRxH = baud_setting >> 8;
- M_UBRRxL = baud_setting;
- SBI(M_UCSRxB, M_RXENx);
- SBI(M_UCSRxB, M_TXENx);
- SBI(M_UCSRxB, M_RXCIEx);
- #if TX_BUFFER_SIZE > 0
- CBI(M_UCSRxB, M_UDRIEx);
- #endif
- _written = false;
- }
- void MarlinSerial::end() {
- CBI(M_UCSRxB, M_RXENx);
- CBI(M_UCSRxB, M_TXENx);
- CBI(M_UCSRxB, M_RXCIEx);
- CBI(M_UCSRxB, M_UDRIEx);
- }
- int MarlinSerial::peek(void) {
- const ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail;
- return h == t ? -1 : rx_buffer.buffer[t];
- }
- int MarlinSerial::read(void) {
- const ring_buffer_pos_t h = atomic_read_rx_head();
- // Read the tail. Main thread owns it, so it is safe to directly read it
- ring_buffer_pos_t t = rx_buffer.tail;
- // If nothing to read, return now
- if (h == t) return -1;
- // Get the next char
- const int v = rx_buffer.buffer[t];
- t = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1);
- // Advance tail - Making sure the RX ISR will always get an stable value, even
- // if it interrupts the writing of the value of that variable in the middle.
- atomic_set_rx_tail(t);
- #if ENABLED(SERIAL_XON_XOFF)
- // If the XOFF char was sent, or about to be sent...
- if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
- // Get count of bytes in the RX buffer
- const ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(h - t) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
- if (rx_count < (RX_BUFFER_SIZE) / 10) {
- #if TX_BUFFER_SIZE > 0
- // Signal we want an XON character to be sent.
- xon_xoff_state = XON_CHAR;
- // Enable TX ISR. Non atomic, but it will eventually enable them
- SBI(M_UCSRxB, M_UDRIEx);
- #else
- // If not using TX interrupts, we must send the XON char now
- xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
- while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier();
- M_UDRx = XON_CHAR;
- #endif
- }
- }
- #endif
- return v;
- }
- ring_buffer_pos_t MarlinSerial::available(void) {
- const ring_buffer_pos_t h = atomic_read_rx_head(), t = rx_buffer.tail;
- return (ring_buffer_pos_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1);
- }
- void MarlinSerial::flush(void) {
- // Set the tail to the head:
- // - Read the RX head index in a safe way. (See atomic_read_rx_head.)
- // - Set the tail, making sure the RX ISR will always get a stable value, even
- // if it interrupts the writing of the value of that variable in the middle.
- atomic_set_rx_tail(atomic_read_rx_head());
- #if ENABLED(SERIAL_XON_XOFF)
- // If the XOFF char was sent, or about to be sent...
- if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
- #if TX_BUFFER_SIZE > 0
- // Signal we want an XON character to be sent.
- xon_xoff_state = XON_CHAR;
- // Enable TX ISR. Non atomic, but it will eventually enable it.
- SBI(M_UCSRxB, M_UDRIEx);
- #else
- // If not using TX interrupts, we must send the XON char now
- xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
- while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier();
- M_UDRx = XON_CHAR;
- #endif
- }
- #endif
- }
- #if TX_BUFFER_SIZE > 0
- void MarlinSerial::write(const uint8_t c) {
- _written = true;
- // If the TX interrupts are disabled and the data register
- // is empty, just write the byte to the data register and
- // be done. This shortcut helps significantly improve the
- // effective datarate at high (>500kbit/s) bitrates, where
- // interrupt overhead becomes a slowdown.
- // Yes, there is a race condition between the sending of the
- // XOFF char at the RX ISR, but it is properly handled there
- if (!TEST(M_UCSRxB, M_UDRIEx) && TEST(M_UCSRxA, M_UDREx)) {
- M_UDRx = c;
- // clear the TXC bit -- "can be cleared by writing a one to its bit
- // location". This makes sure flush() won't return until the bytes
- // actually got written
- SBI(M_UCSRxA, M_TXCx);
- return;
- }
- const uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1);
- // If global interrupts are disabled (as the result of being called from an ISR)...
- if (!ISRS_ENABLED()) {
- // Make room by polling if it is possible to transmit, and do so!
- while (i == tx_buffer.tail) {
- // If we can transmit another byte, do it.
- if (TEST(M_UCSRxA, M_UDREx)) _tx_udr_empty_irq();
- // Make sure compiler rereads tx_buffer.tail
- sw_barrier();
- }
- }
- else {
- // Interrupts are enabled, just wait until there is space
- while (i == tx_buffer.tail) { sw_barrier(); }
- }
- // Store new char. head is always safe to move
- tx_buffer.buffer[tx_buffer.head] = c;
- tx_buffer.head = i;
- // Enable TX ISR - Non atomic, but it will eventually enable TX ISR
- SBI(M_UCSRxB, M_UDRIEx);
- }
- void MarlinSerial::flushTX(void) {
- // No bytes written, no need to flush. This special case is needed since there's
- // no way to force the TXC (transmit complete) bit to 1 during initialization.
- if (!_written) return;
- // If global interrupts are disabled (as the result of being called from an ISR)...
- if (!ISRS_ENABLED()) {
- // Wait until everything was transmitted - We must do polling, as interrupts are disabled
- while (tx_buffer.head != tx_buffer.tail || !TEST(M_UCSRxA, M_TXCx)) {
- // If there is more space, send an extra character
- if (TEST(M_UCSRxA, M_UDREx))
- _tx_udr_empty_irq();
- sw_barrier();
- }
- }
- else {
- // Wait until everything was transmitted
- while (tx_buffer.head != tx_buffer.tail || !TEST(M_UCSRxA, M_TXCx)) sw_barrier();
- }
- // At this point nothing is queued anymore (DRIE is disabled) and
- // the hardware finished transmission (TXC is set).
- }
- #else // TX_BUFFER_SIZE == 0
- void MarlinSerial::write(const uint8_t c) {
- _written = true;
- while (!TEST(M_UCSRxA, M_UDREx)) sw_barrier();
- M_UDRx = c;
- }
- void MarlinSerial::flushTX(void) {
- // No bytes written, no need to flush. This special case is needed since there's
- // no way to force the TXC (transmit complete) bit to 1 during initialization.
- if (!_written) return;
- // Wait until everything was transmitted
- while (!TEST(M_UCSRxA, M_TXCx)) sw_barrier();
- // At this point nothing is queued anymore (DRIE is disabled) and
- // the hardware finished transmission (TXC is set).
- }
- #endif // TX_BUFFER_SIZE == 0
- /**
- * Imports from print.h
- */
- void MarlinSerial::print(char c, int base) {
- print((long)c, base);
- }
- void MarlinSerial::print(unsigned char b, int base) {
- print((unsigned long)b, base);
- }
- void MarlinSerial::print(int n, int base) {
- print((long)n, base);
- }
- void MarlinSerial::print(unsigned int n, int base) {
- print((unsigned long)n, base);
- }
- void MarlinSerial::print(long n, int base) {
- if (base == 0) write(n);
- else if (base == 10) {
- if (n < 0) { print('-'); n = -n; }
- printNumber(n, 10);
- }
- else
- printNumber(n, base);
- }
- void MarlinSerial::print(unsigned long n, int base) {
- if (base == 0) write(n);
- else printNumber(n, base);
- }
- void MarlinSerial::print(double n, int digits) {
- printFloat(n, digits);
- }
- void MarlinSerial::println(void) {
- print('\r');
- print('\n');
- }
- void MarlinSerial::println(const String& s) {
- print(s);
- println();
- }
- void MarlinSerial::println(const char c[]) {
- print(c);
- println();
- }
- void MarlinSerial::println(char c, int base) {
- print(c, base);
- println();
- }
- void MarlinSerial::println(unsigned char b, int base) {
- print(b, base);
- println();
- }
- void MarlinSerial::println(int n, int base) {
- print(n, base);
- println();
- }
- void MarlinSerial::println(unsigned int n, int base) {
- print(n, base);
- println();
- }
- void MarlinSerial::println(long n, int base) {
- print(n, base);
- println();
- }
- void MarlinSerial::println(unsigned long n, int base) {
- print(n, base);
- println();
- }
- void MarlinSerial::println(double n, int digits) {
- print(n, digits);
- println();
- }
- // Private Methods
- void MarlinSerial::printNumber(unsigned long n, uint8_t base) {
- if (n) {
- unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
- int8_t i = 0;
- while (n) {
- buf[i++] = n % base;
- n /= base;
- }
- while (i--)
- print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10)));
- }
- else
- print('0');
- }
- void MarlinSerial::printFloat(double number, uint8_t digits) {
- // Handle negative numbers
- if (number < 0.0) {
- print('-');
- number = -number;
- }
- // Round correctly so that print(1.999, 2) prints as "2.00"
- double rounding = 0.5;
- for (uint8_t i = 0; i < digits; ++i)
- rounding *= 0.1;
- number += rounding;
- // Extract the integer part of the number and print it
- unsigned long int_part = (unsigned long)number;
- double remainder = number - (double)int_part;
- print(int_part);
- // Print the decimal point, but only if there are digits beyond
- if (digits) {
- print('.');
- // Extract digits from the remainder one at a time
- while (digits--) {
- remainder *= 10.0;
- int toPrint = int(remainder);
- print(toPrint);
- remainder -= toPrint;
- }
- }
- }
- // Preinstantiate
- MarlinSerial customizedSerial;
- #endif // USE_MARLINSERIAL && (UBRRH || UBRR0H || UBRR1H || UBRR2H || UBRR3H)
- // For AT90USB targets use the UART for BT interfacing
- #if !USE_MARLINSERIAL && ENABLED(BLUETOOTH)
- HardwareSerial bluetoothSerial;
- #endif
|