123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
- /**
- * planner.cpp
- *
- * Buffer movement commands and manage the acceleration profile plan
- *
- * Derived from Grbl
- * Copyright (c) 2009-2011 Simen Svale Skogsrud
- *
- * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
- *
- *
- * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
- *
- * s == speed, a == acceleration, t == time, d == distance
- *
- * Basic definitions:
- * Speed[s_, a_, t_] := s + (a*t)
- * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
- *
- * Distance to reach a specific speed with a constant acceleration:
- * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
- * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
- *
- * Speed after a given distance of travel with constant acceleration:
- * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
- * m -> Sqrt[2 a d + s^2]
- *
- * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
- *
- * When to start braking (di) to reach a specified destination speed (s2) after accelerating
- * from initial speed s1 without ever stopping at a plateau:
- * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
- * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
- *
- * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
- *
- * --
- *
- * The fast inverse function needed for Bézier interpolation for AVR
- * was designed, written and tested by Eduardo José Tagle on April/2018
- */
- #include "planner.h"
- #include "stepper.h"
- #include "temperature.h"
- #include "ultralcd.h"
- #include "language.h"
- #include "parser.h"
- #include "Marlin.h"
- #if ENABLED(MESH_BED_LEVELING)
- #include "mesh_bed_leveling.h"
- #elif ENABLED(AUTO_BED_LEVELING_UBL)
- #include "ubl.h"
- #endif
- #if ENABLED(AUTO_POWER_CONTROL)
- #include "power.h"
- #endif
- // Delay for delivery of first block to the stepper ISR, if the queue contains 2 or
- // fewer movements. The delay is measured in milliseconds, and must be less than 250ms
- #define BLOCK_DELAY_FOR_1ST_MOVE 100
- Planner planner;
- // public:
- /**
- * A ring buffer of moves described in steps
- */
- block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
- volatile uint8_t Planner::block_buffer_head, // Index of the next block to be pushed
- Planner::block_buffer_nonbusy, // Index of the first non-busy block
- Planner::block_buffer_planned, // Index of the optimally planned block
- Planner::block_buffer_tail; // Index of the busy block, if any
- uint16_t Planner::cleaning_buffer_counter; // A counter to disable queuing of blocks
- uint8_t Planner::delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
- uint32_t Planner::max_acceleration_mm_per_s2[NUM_AXIS_N], // (mm/s^2) M201 XYZE
- Planner::max_acceleration_steps_per_s2[NUM_AXIS_N], // (steps/s^2) Derived from mm_per_s2
- Planner::min_segment_time_us; // (µs) M205 Q
- float Planner::max_feedrate_mm_s[NUM_AXIS_N], // (mm/s) M203 XYZE - Max speeds
- Planner::axis_steps_per_mm[NUM_AXIS_N], // (steps) M92 XYZE - Steps per millimeter
- Planner::steps_to_mm[NUM_AXIS_N], // (mm) Millimeters per step
- Planner::min_feedrate_mm_s, // (mm/s) M205 S - Minimum linear feedrate
- Planner::acceleration, // (mm/s^2) M204 S - Normal acceleration. DEFAULT ACCELERATION for all printing moves.
- Planner::retract_acceleration, // (mm/s^2) M204 R - Retract acceleration. Filament pull-back and push-forward while standing still in the other axes
- Planner::travel_acceleration, // (mm/s^2) M204 T - Travel acceleration. DEFAULT ACCELERATION for all NON printing moves.
- Planner::min_travel_feedrate_mm_s; // (mm/s) M205 T - Minimum travel feedrate
- #if ENABLED(JUNCTION_DEVIATION)
- float Planner::junction_deviation_mm; // (mm) M205 J
- #if ENABLED(LIN_ADVANCE)
- #if ENABLED(DISTINCT_E_FACTORS)
- float Planner::max_e_jerk[EXTRUDERS]; // Calculated from junction_deviation_mm
- #else
- float Planner::max_e_jerk;
- #endif
- #endif
- #else
- float Planner::max_jerk[NUM_AXIS]; // (mm/s^2) M205 XYZE - The largest speed change requiring no acceleration.
- #endif
- #if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
- float Planner::k0[MOV_AXIS],
- Planner::k1[MOV_AXIS],
- Planner::k2[MOV_AXIS],
- Planner::sqrtk1[MOV_AXIS];
- #endif
- #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
- bool Planner::abort_on_endstop_hit = false;
- #endif
- #if ENABLED(DISTINCT_E_FACTORS)
- uint8_t Planner::last_extruder = 0; // Respond to extruder change
- #define _EINDEX (E_AXIS + active_extruder)
- #else
- #define _EINDEX E_AXIS
- #endif
- int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
- float Planner::e_factor[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0f); // The flow percentage and volumetric multiplier combine to scale E movement
- #if DISABLED(NO_VOLUMETRICS)
- float Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
- Planner::volumetric_area_nominal = CIRCLE_AREA(float(DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5f), // Nominal cross-sectional area
- Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
- #endif
- #if HAS_LEVELING
- bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled
- #if ABL_PLANAR
- matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
- #endif
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- float Planner::z_fade_height, // Initialized by settings.load()
- Planner::inverse_z_fade_height,
- Planner::last_fade_z;
- #endif
- #else
- constexpr bool Planner::leveling_active;
- #endif
- #if ENABLED(SKEW_CORRECTION)
- #if ENABLED(SKEW_CORRECTION_GCODE)
- float Planner::xy_skew_factor;
- #else
- constexpr float Planner::xy_skew_factor;
- #endif
- #if ENABLED(SKEW_CORRECTION_FOR_Z) && ENABLED(SKEW_CORRECTION_GCODE)
- float Planner::xz_skew_factor, Planner::yz_skew_factor;
- #else
- constexpr float Planner::xz_skew_factor, Planner::yz_skew_factor;
- #endif
- #endif
- #if ENABLED(AUTOTEMP)
- float Planner::autotemp_max = 250,
- Planner::autotemp_min = 210,
- Planner::autotemp_factor = 0.1f;
- bool Planner::autotemp_enabled = false;
- #endif
- // private:
- int32_t Planner::position[NUM_AXIS] = { 0 };
- uint32_t Planner::cutoff_long;
- float Planner::previous_speed[NUM_AXIS],
- Planner::previous_nominal_speed_sqr;
- #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
- uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
- #endif
- #ifdef XY_FREQUENCY_LIMIT
- // Old direction bits. Used for speed calculations
- unsigned char Planner::old_direction_bits = 0;
- // Segment times (in µs). Used for speed calculations
- uint32_t Planner::axis_segment_time_us[2][3] = { { MAX_FREQ_TIME_US + 1, 0, 0 }, { MAX_FREQ_TIME_US + 1, 0, 0 } };
- #endif
- #if ENABLED(LIN_ADVANCE)
- float Planner::extruder_advance_K; // Initialized by settings.load()
- #endif
- #if HAS_POSITION_FLOAT
- float Planner::position_float[NUM_AXIS]; // Needed for accurate maths. Steps cannot be used!
- #endif
- #if ENABLED(ULTRA_LCD)
- volatile uint32_t Planner::block_buffer_runtime_us = 0;
- #endif
- /**
- * Class and Instance Methods
- */
- Planner::Planner() { init(); }
- void Planner::init() {
- ZERO(position);
- #if HAS_POSITION_FLOAT
- ZERO(position_float);
- #endif
- ZERO(previous_speed);
- previous_nominal_speed_sqr = 0;
- #if ABL_PLANAR
- bed_level_matrix.set_to_identity();
- #endif
- clear_block_buffer();
- delay_before_delivering = 0;
- }
- #if ENABLED(S_CURVE_ACCELERATION)
- /**
- * This routine returns 0x1000000 / d, getting the inverse as fast as possible.
- * A fast-converging iterative Newton-Raphson method can reach full precision in
- * just 1 iteration, and takes 211 cycles (worst case; the mean case is less, up
- * to 30 cycles for small divisors), instead of the 500 cycles a normal division
- * would take.
- *
- * Inspired by the following page:
- * https://stackoverflow.com/questions/27801397/newton-raphson-division-with-big-integers
- *
- * Suppose we want to calculate floor(2 ^ k / B) where B is a positive integer
- * Then, B must be <= 2^k, otherwise, the quotient is 0.
- *
- * The Newton - Raphson iteration for x = B / 2 ^ k yields:
- * q[n + 1] = q[n] * (2 - q[n] * B / 2 ^ k)
- *
- * This can be rearranged to:
- * q[n + 1] = q[n] * (2 ^ (k + 1) - q[n] * B) >> k
- *
- * Each iteration requires only integer multiplications and bit shifts.
- * It doesn't necessarily converge to floor(2 ^ k / B) but in the worst case
- * it eventually alternates between floor(2 ^ k / B) and ceil(2 ^ k / B).
- * So it checks for this case and extracts floor(2 ^ k / B).
- *
- * A simple but important optimization for this approach is to truncate
- * multiplications (i.e., calculate only the higher bits of the product) in the
- * early iterations of the Newton - Raphson method. This is done so the results
- * of the early iterations are far from the quotient. Then it doesn't matter if
- * they are done inaccurately.
- * It's important to pick a good starting value for x. Knowing how many
- * digits the divisor has, it can be estimated:
- *
- * 2^k / x = 2 ^ log2(2^k / x)
- * 2^k / x = 2 ^(log2(2^k)-log2(x))
- * 2^k / x = 2 ^(k*log2(2)-log2(x))
- * 2^k / x = 2 ^ (k-log2(x))
- * 2^k / x >= 2 ^ (k-floor(log2(x)))
- * floor(log2(x)) is simply the index of the most significant bit set.
- *
- * If this estimation can be improved even further the number of iterations can be
- * reduced a lot, saving valuable execution time.
- * The paper "Software Integer Division" by Thomas L.Rodeheffer, Microsoft
- * Research, Silicon Valley,August 26, 2008, available at
- * https://www.microsoft.com/en-us/research/wp-content/uploads/2008/08/tr-2008-141.pdf
- * suggests, for its integer division algorithm, using a table to supply the first
- * 8 bits of precision, then, due to the quadratic convergence nature of the
- * Newton-Raphon iteration, just 2 iterations should be enough to get maximum
- * precision of the division.
- * By precomputing values of inverses for small denominator values, just one
- * Newton-Raphson iteration is enough to reach full precision.
- * This code uses the top 9 bits of the denominator as index.
- *
- * The AVR assembly function implements this C code using the data below:
- *
- * // For small divisors, it is best to directly retrieve the results
- * if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);
- *
- * // Compute initial estimation of 0x1000000/x -
- * // Get most significant bit set on divider
- * uint8_t idx = 0;
- * uint32_t nr = d;
- * if (!(nr & 0xFF0000)) {
- * nr <<= 8; idx += 8;
- * if (!(nr & 0xFF0000)) { nr <<= 8; idx += 8; }
- * }
- * if (!(nr & 0xF00000)) { nr <<= 4; idx += 4; }
- * if (!(nr & 0xC00000)) { nr <<= 2; idx += 2; }
- * if (!(nr & 0x800000)) { nr <<= 1; idx += 1; }
- *
- * // Isolate top 9 bits of the denominator, to be used as index into the initial estimation table
- * uint32_t tidx = nr >> 15, // top 9 bits. bit8 is always set
- * ie = inv_tab[tidx & 0xFF] + 256, // Get the table value. bit9 is always set
- * x = idx <= 8 ? (ie >> (8 - idx)) : (ie << (idx - 8)); // Position the estimation at the proper place
- *
- * x = uint32_t((x * uint64_t(_BV(25) - x * d)) >> 24); // Refine estimation by newton-raphson. 1 iteration is enough
- * const uint32_t r = _BV(24) - x * d; // Estimate remainder
- * if (r >= d) x++; // Check whether to adjust result
- * return uint32_t(x); // x holds the proper estimation
- *
- */
- static uint32_t get_period_inverse(uint32_t d) {
- static const uint8_t inv_tab[256] PROGMEM = {
- 255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227,
- 225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200,
- 199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176,
- 175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154,
- 153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135,
- 134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117,
- 116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,
- 100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86,
- 85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72,
- 71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59,
- 59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48,
- 47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37,
- 36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27,
- 26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17,
- 17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8,
- 8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0
- };
- // For small denominators, it is cheaper to directly store the result.
- // For bigger ones, just ONE Newton-Raphson iteration is enough to get
- // maximum precision we need
- static const uint32_t small_inv_tab[111] PROGMEM = {
- 16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481,
- 1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200,
- 524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962,
- 349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305,
- 262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369,
- 209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602,
- 174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520
- };
- // For small divisors, it is best to directly retrieve the results
- if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);
- register uint8_t r8 = d & 0xFF,
- r9 = (d >> 8) & 0xFF,
- r10 = (d >> 16) & 0xFF,
- r2,r3,r4,r5,r6,r7,r11,r12,r13,r14,r15,r16,r17,r18;
- register const uint8_t* ptab = inv_tab;
- __asm__ __volatile__(
- // %8:%7:%6 = interval
- // r31:r30: MUST be those registers, and they must point to the inv_tab
- A("clr %13") // %13 = 0
- // Now we must compute
- // result = 0xFFFFFF / d
- // %8:%7:%6 = interval
- // %16:%15:%14 = nr
- // %13 = 0
- // A plain division of 24x24 bits should take 388 cycles to complete. We will
- // use Newton-Raphson for the calculation, and will strive to get way less cycles
- // for the same result - Using C division, it takes 500cycles to complete .
- A("clr %3") // idx = 0
- A("mov %14,%6")
- A("mov %15,%7")
- A("mov %16,%8") // nr = interval
- A("tst %16") // nr & 0xFF0000 == 0 ?
- A("brne 2f") // No, skip this
- A("mov %16,%15")
- A("mov %15,%14") // nr <<= 8, %14 not needed
- A("subi %3,-8") // idx += 8
- A("tst %16") // nr & 0xFF0000 == 0 ?
- A("brne 2f") // No, skip this
- A("mov %16,%15") // nr <<= 8, %14 not needed
- A("clr %15") // We clear %14
- A("subi %3,-8") // idx += 8
- // here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0
- L("2")
- A("cpi %16,0x10") // (nr & 0xF00000) == 0 ?
- A("brcc 3f") // No, skip this
- A("swap %15") // Swap nibbles
- A("swap %16") // Swap nibbles. Low nibble is 0
- A("mov %14, %15")
- A("andi %14,0x0F") // Isolate low nibble
- A("andi %15,0xF0") // Keep proper nibble in %15
- A("or %16, %14") // %16:%15 <<= 4
- A("subi %3,-4") // idx += 4
- L("3")
- A("cpi %16,0x40") // (nr & 0xC00000) == 0 ?
- A("brcc 4f") // No, skip this
- A("add %15,%15")
- A("adc %16,%16")
- A("add %15,%15")
- A("adc %16,%16") // %16:%15 <<= 2
- A("subi %3,-2") // idx += 2
- L("4")
- A("cpi %16,0x80") // (nr & 0x800000) == 0 ?
- A("brcc 5f") // No, skip this
- A("add %15,%15")
- A("adc %16,%16") // %16:%15 <<= 1
- A("inc %3") // idx += 1
- // Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure
- // we have at least 9 MSBits available to enter the initial estimation table
- L("5")
- A("add %15,%15")
- A("adc %16,%16") // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table)
- A("add r30,%16") // Only use top 8 bits
- A("adc r31,%13") // r31:r30 = inv_tab + (tidx)
- A("lpm %14, Z") // %14 = inv_tab[tidx]
- A("ldi %15, 1") // %15 = 1 %15:%14 = inv_tab[tidx] + 256
- // We must scale the approximation to the proper place
- A("clr %16") // %16 will always be 0 here
- A("subi %3,8") // idx == 8 ?
- A("breq 6f") // yes, no need to scale
- A("brcs 7f") // If C=1, means idx < 8, result was negative!
- // idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8]
- A("sbrs %3,0") // shift by 1bit position?
- A("rjmp 8f") // No
- A("add %14,%14")
- A("adc %15,%15") // %15:16 <<= 1
- L("8")
- A("sbrs %3,1") // shift by 2bit position?
- A("rjmp 9f") // No
- A("add %14,%14")
- A("adc %15,%15")
- A("add %14,%14")
- A("adc %15,%15") // %15:16 <<= 1
- L("9")
- A("sbrs %3,2") // shift by 4bits position?
- A("rjmp 16f") // No
- A("swap %15") // Swap nibbles. lo nibble of %15 will always be 0
- A("swap %14") // Swap nibbles
- A("mov %12,%14")
- A("andi %12,0x0F") // isolate low nibble
- A("andi %14,0xF0") // and clear it
- A("or %15,%12") // %15:%16 <<= 4
- L("16")
- A("sbrs %3,3") // shift by 8bits position?
- A("rjmp 6f") // No, we are done
- A("mov %16,%15")
- A("mov %15,%14")
- A("clr %14")
- A("jmp 6f")
- // idx < 8, now %3 = idx - 8. Get the count of bits
- L("7")
- A("neg %3") // %3 = -idx = count of bits to move right. idx range:[1...8]
- A("sbrs %3,0") // shift by 1 bit position ?
- A("rjmp 10f") // No, skip it
- A("asr %15") // (bit7 is always 0 here)
- A("ror %14")
- L("10")
- A("sbrs %3,1") // shift by 2 bit position ?
- A("rjmp 11f") // No, skip it
- A("asr %15") // (bit7 is always 0 here)
- A("ror %14")
- A("asr %15") // (bit7 is always 0 here)
- A("ror %14")
- L("11")
- A("sbrs %3,2") // shift by 4 bit position ?
- A("rjmp 12f") // No, skip it
- A("swap %15") // Swap nibbles
- A("andi %14, 0xF0") // Lose the lowest nibble
- A("swap %14") // Swap nibbles. Upper nibble is 0
- A("or %14,%15") // Pass nibble from upper byte
- A("andi %15, 0x0F") // And get rid of that nibble
- L("12")
- A("sbrs %3,3") // shift by 8 bit position ?
- A("rjmp 6f") // No, skip it
- A("mov %14,%15")
- A("clr %15")
- L("6") // %16:%15:%14 = initial estimation of 0x1000000 / d
- // Now, we must refine the estimation present on %16:%15:%14 using 1 iteration
- // of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough
- // to get more than 18bits of precision (the initial table lookup gives 9 bits of
- // precision to start from). 18bits of precision is all what is needed here for result
- // %8:%7:%6 = d = interval
- // %16:%15:%14 = x = initial estimation of 0x1000000 / d
- // %13 = 0
- // %3:%2:%1:%0 = working accumulator
- // Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive
- A("clr %0")
- A("clr %1")
- A("clr %2")
- A("ldi %3,2") // %3:%2:%1:%0 = 0x2000000
- A("mul %6,%14") // r1:r0 = LO(d) * LO(x)
- A("sub %0,r0")
- A("sbc %1,r1")
- A("sbc %2,%13")
- A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
- A("mul %7,%14") // r1:r0 = MI(d) * LO(x)
- A("sub %1,r0")
- A("sbc %2,r1")
- A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
- A("mul %8,%14") // r1:r0 = HI(d) * LO(x)
- A("sub %2,r0")
- A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
- A("mul %6,%15") // r1:r0 = LO(d) * MI(x)
- A("sub %1,r0")
- A("sbc %2,r1")
- A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
- A("mul %7,%15") // r1:r0 = MI(d) * MI(x)
- A("sub %2,r0")
- A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
- A("mul %8,%15") // r1:r0 = HI(d) * MI(x)
- A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
- A("mul %6,%16") // r1:r0 = LO(d) * HI(x)
- A("sub %2,r0")
- A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
- A("mul %7,%16") // r1:r0 = MI(d) * HI(x)
- A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
- // %3:%2:%1:%0 = (1<<25) - x*d [169]
- // We need to multiply that result by x, and we are only interested in the top 24bits of that multiply
- // %16:%15:%14 = x = initial estimation of 0x1000000 / d
- // %3:%2:%1:%0 = (1<<25) - x*d = acc
- // %13 = 0
- // result = %11:%10:%9:%5:%4
- A("mul %14,%0") // r1:r0 = LO(x) * LO(acc)
- A("mov %4,r1")
- A("clr %5")
- A("clr %9")
- A("clr %10")
- A("clr %11") // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8
- A("mul %15,%0") // r1:r0 = MI(x) * LO(acc)
- A("add %4,r0")
- A("adc %5,r1")
- A("adc %9,%13")
- A("adc %10,%13")
- A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc)
- A("mul %16,%0") // r1:r0 = HI(x) * LO(acc)
- A("add %5,r0")
- A("adc %9,r1")
- A("adc %10,%13")
- A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8
- A("mul %14,%1") // r1:r0 = LO(x) * MIL(acc)
- A("add %4,r0")
- A("adc %5,r1")
- A("adc %9,%13")
- A("adc %10,%13")
- A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIL(acc)
- A("mul %15,%1") // r1:r0 = MI(x) * MIL(acc)
- A("add %5,r0")
- A("adc %9,r1")
- A("adc %10,%13")
- A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8
- A("mul %16,%1") // r1:r0 = HI(x) * MIL(acc)
- A("add %9,r0")
- A("adc %10,r1")
- A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16
- A("mul %14,%2") // r1:r0 = LO(x) * MIH(acc)
- A("add %5,r0")
- A("adc %9,r1")
- A("adc %10,%13")
- A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8
- A("mul %15,%2") // r1:r0 = MI(x) * MIH(acc)
- A("add %9,r0")
- A("adc %10,r1")
- A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16
- A("mul %16,%2") // r1:r0 = HI(x) * MIH(acc)
- A("add %10,r0")
- A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24
- A("mul %14,%3") // r1:r0 = LO(x) * HI(acc)
- A("add %9,r0")
- A("adc %10,r1")
- A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16
- A("mul %15,%3") // r1:r0 = MI(x) * HI(acc)
- A("add %10,r0")
- A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24
- A("mul %16,%3") // r1:r0 = HI(x) * HI(acc)
- A("add %11,r0") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32
- // At this point, %11:%10:%9 contains the new estimation of x.
- // Finally, we must correct the result. Estimate remainder as
- // (1<<24) - x*d
- // %11:%10:%9 = x
- // %8:%7:%6 = d = interval" "\n\t"
- A("ldi %3,1")
- A("clr %2")
- A("clr %1")
- A("clr %0") // %3:%2:%1:%0 = 0x1000000
- A("mul %6,%9") // r1:r0 = LO(d) * LO(x)
- A("sub %0,r0")
- A("sbc %1,r1")
- A("sbc %2,%13")
- A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
- A("mul %7,%9") // r1:r0 = MI(d) * LO(x)
- A("sub %1,r0")
- A("sbc %2,r1")
- A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
- A("mul %8,%9") // r1:r0 = HI(d) * LO(x)
- A("sub %2,r0")
- A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
- A("mul %6,%10") // r1:r0 = LO(d) * MI(x)
- A("sub %1,r0")
- A("sbc %2,r1")
- A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
- A("mul %7,%10") // r1:r0 = MI(d) * MI(x)
- A("sub %2,r0")
- A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
- A("mul %8,%10") // r1:r0 = HI(d) * MI(x)
- A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
- A("mul %6,%11") // r1:r0 = LO(d) * HI(x)
- A("sub %2,r0")
- A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
- A("mul %7,%11") // r1:r0 = MI(d) * HI(x)
- A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
- // %3:%2:%1:%0 = r = (1<<24) - x*d
- // %8:%7:%6 = d = interval
- // Perform the final correction
- A("sub %0,%6")
- A("sbc %1,%7")
- A("sbc %2,%8") // r -= d
- A("brcs 14f") // if ( r >= d)
- // %11:%10:%9 = x
- A("ldi %3,1")
- A("add %9,%3")
- A("adc %10,%13")
- A("adc %11,%13") // x++
- L("14")
- // Estimation is done. %11:%10:%9 = x
- A("clr __zero_reg__") // Make C runtime happy
- // [211 cycles total]
- : "=r" (r2),
- "=r" (r3),
- "=r" (r4),
- "=d" (r5),
- "=r" (r6),
- "=r" (r7),
- "+r" (r8),
- "+r" (r9),
- "+r" (r10),
- "=d" (r11),
- "=r" (r12),
- "=r" (r13),
- "=d" (r14),
- "=d" (r15),
- "=d" (r16),
- "=d" (r17),
- "=d" (r18),
- "+z" (ptab)
- :
- : "r0", "r1", "cc"
- );
- // Return the result
- return r11 | (uint16_t(r12) << 8) | (uint32_t(r13) << 16);
- }
- #endif // S_CURVE_ACCELERATION
- #define MINIMAL_STEP_RATE 120
- /**
- * Calculate trapezoid parameters, multiplying the entry- and exit-speeds
- * by the provided factors.
- **
- * ############ VERY IMPORTANT ############
- * NOTE that the PRECONDITION to call this function is that the block is
- * NOT BUSY and it is marked as RECALCULATE. That WARRANTIES the Stepper ISR
- * is not and will not use the block while we modify it, so it is safe to
- * alter its values.
- */
- void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) {
- uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor),
- final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second)
- // Limit minimal step rate (Otherwise the timer will overflow.)
- NOLESS(initial_rate, uint32_t(MINIMAL_STEP_RATE));
- NOLESS(final_rate, uint32_t(MINIMAL_STEP_RATE));
- #if ENABLED(S_CURVE_ACCELERATION)
- uint32_t cruise_rate = initial_rate;
- #endif
- const int32_t accel = block->acceleration_steps_per_s2;
- // Steps required for acceleration, deceleration to/from nominal rate
- uint32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
- decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel));
- // Steps between acceleration and deceleration, if any
- int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
- // Does accelerate_steps + decelerate_steps exceed step_event_count?
- // Then we can't possibly reach the nominal rate, there will be no cruising.
- // Use intersection_distance() to calculate accel / braking time in order to
- // reach the final_rate exactly at the end of this block.
- if (plateau_steps < 0) {
- const float accelerate_steps_float = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
- accelerate_steps = MIN(uint32_t(MAX(accelerate_steps_float, 0)), block->step_event_count);
- plateau_steps = 0;
- #if ENABLED(S_CURVE_ACCELERATION)
- // We won't reach the cruising rate. Let's calculate the speed we will reach
- cruise_rate = final_speed(initial_rate, accel, accelerate_steps);
- #endif
- }
- #if ENABLED(S_CURVE_ACCELERATION)
- else // We have some plateau time, so the cruise rate will be the nominal rate
- cruise_rate = block->nominal_rate;
- #endif
- #if ENABLED(S_CURVE_ACCELERATION)
- // Jerk controlled speed requires to express speed versus time, NOT steps
- uint32_t acceleration_time = ((float)(cruise_rate - initial_rate) / accel) * (STEPPER_TIMER_RATE),
- deceleration_time = ((float)(cruise_rate - final_rate) / accel) * (STEPPER_TIMER_RATE);
- // And to offload calculations from the ISR, we also calculate the inverse of those times here
- uint32_t acceleration_time_inverse = get_period_inverse(acceleration_time);
- uint32_t deceleration_time_inverse = get_period_inverse(deceleration_time);
- #endif
- // Store new block parameters
- block->accelerate_until = accelerate_steps;
- block->decelerate_after = accelerate_steps + plateau_steps;
- block->initial_rate = initial_rate;
- #if ENABLED(S_CURVE_ACCELERATION)
- block->acceleration_time = acceleration_time;
- block->deceleration_time = deceleration_time;
- block->acceleration_time_inverse = acceleration_time_inverse;
- block->deceleration_time_inverse = deceleration_time_inverse;
- block->cruise_rate = cruise_rate;
- #endif
- block->final_rate = final_rate;
- }
- /* PLANNER SPEED DEFINITION
- +--------+ <- current->nominal_speed
- / \
- current->entry_speed -> + \
- | + <- next->entry_speed (aka exit speed)
- +-------------+
- time -->
- Recalculates the motion plan according to the following basic guidelines:
- 1. Go over every feasible block sequentially in reverse order and calculate the junction speeds
- (i.e. current->entry_speed) such that:
- a. No junction speed exceeds the pre-computed maximum junction speed limit or nominal speeds of
- neighboring blocks.
- b. A block entry speed cannot exceed one reverse-computed from its exit speed (next->entry_speed)
- with a maximum allowable deceleration over the block travel distance.
- c. The last (or newest appended) block is planned from a complete stop (an exit speed of zero).
- 2. Go over every block in chronological (forward) order and dial down junction speed values if
- a. The exit speed exceeds the one forward-computed from its entry speed with the maximum allowable
- acceleration over the block travel distance.
- When these stages are complete, the planner will have maximized the velocity profiles throughout the all
- of the planner blocks, where every block is operating at its maximum allowable acceleration limits. In
- other words, for all of the blocks in the planner, the plan is optimal and no further speed improvements
- are possible. If a new block is added to the buffer, the plan is recomputed according to the said
- guidelines for a new optimal plan.
- To increase computational efficiency of these guidelines, a set of planner block pointers have been
- created to indicate stop-compute points for when the planner guidelines cannot logically make any further
- changes or improvements to the plan when in normal operation and new blocks are streamed and added to the
- planner buffer. For example, if a subset of sequential blocks in the planner have been planned and are
- bracketed by junction velocities at their maximums (or by the first planner block as well), no new block
- added to the planner buffer will alter the velocity profiles within them. So we no longer have to compute
- them. Or, if a set of sequential blocks from the first block in the planner (or a optimal stop-compute
- point) are all accelerating, they are all optimal and can not be altered by a new block added to the
- planner buffer, as this will only further increase the plan speed to chronological blocks until a maximum
- junction velocity is reached. However, if the operational conditions of the plan changes from infrequently
- used feed holds or feedrate overrides, the stop-compute pointers will be reset and the entire plan is
- recomputed as stated in the general guidelines.
- Planner buffer index mapping:
- - block_buffer_tail: Points to the beginning of the planner buffer. First to be executed or being executed.
- - block_buffer_head: Points to the buffer block after the last block in the buffer. Used to indicate whether
- the buffer is full or empty. As described for standard ring buffers, this block is always empty.
- - block_buffer_planned: Points to the first buffer block after the last optimally planned block for normal
- streaming operating conditions. Use for planning optimizations by avoiding recomputing parts of the
- planner buffer that don't change with the addition of a new block, as describe above. In addition,
- this block can never be less than block_buffer_tail and will always be pushed forward and maintain
- this requirement when encountered by the Planner::discard_current_block() routine during a cycle.
- NOTE: Since the planner only computes on what's in the planner buffer, some motions with lots of short
- line segments, like G2/3 arcs or complex curves, may seem to move slow. This is because there simply isn't
- enough combined distance traveled in the entire buffer to accelerate up to the nominal speed and then
- decelerate to a complete stop at the end of the buffer, as stated by the guidelines. If this happens and
- becomes an annoyance, there are a few simple solutions: (1) Maximize the machine acceleration. The planner
- will be able to compute higher velocity profiles within the same combined distance. (2) Maximize line
- motion(s) distance per block to a desired tolerance. The more combined distance the planner has to use,
- the faster it can go. (3) Maximize the planner buffer size. This also will increase the combined distance
- for the planner to compute over. It also increases the number of computations the planner has to perform
- to compute an optimal plan, so select carefully.
- */
- // The kernel called by recalculate() when scanning the plan from last to first entry.
- void Planner::reverse_pass_kernel(block_t* const current, const block_t * const next) {
- if (current) {
- // If entry speed is already at the maximum entry speed, and there was no change of speed
- // in the next block, there is no need to recheck. Block is cruising and there is no need to
- // compute anything for this block,
- // If not, block entry speed needs to be recalculated to ensure maximum possible planned speed.
- const float max_entry_speed_sqr = current->max_entry_speed_sqr;
- // Compute maximum entry speed decelerating over the current block from its exit speed.
- // If not at the maximum entry speed, or the previous block entry speed changed
- if (current->entry_speed_sqr != max_entry_speed_sqr || (next && TEST(next->flag, BLOCK_BIT_RECALCULATE))) {
- // If nominal length true, max junction speed is guaranteed to be reached.
- // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
- // the current block and next block junction speeds are guaranteed to always be at their maximum
- // junction speeds in deceleration and acceleration, respectively. This is due to how the current
- // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
- // the reverse and forward planners, the corresponding block junction speed will always be at the
- // the maximum junction speed and may always be ignored for any speed reduction checks.
- const float new_entry_speed_sqr = TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH)
- ? max_entry_speed_sqr
- : MIN(max_entry_speed_sqr, max_allowable_speed_sqr(-current->acceleration, next ? next->entry_speed_sqr : sq(float(MINIMUM_PLANNER_SPEED)), current->millimeters));
- if (current->entry_speed_sqr != new_entry_speed_sqr) {
- // Need to recalculate the block speed - Mark it now, so the stepper
- // ISR does not consume the block before being recalculated
- SBI(current->flag, BLOCK_BIT_RECALCULATE);
- // But there is an inherent race condition here, as the block may have
- // become BUSY just before being marked RECALCULATE, so check for that!
- if (stepper.is_block_busy(current)) {
- // Block became busy. Clear the RECALCULATE flag (no point in
- // recalculating BUSY blocks). And don't set its speed, as it can't
- // be updated at this time.
- CBI(current->flag, BLOCK_BIT_RECALCULATE);
- }
- else {
- // Block is not BUSY so this is ahead of the Stepper ISR:
- // Just Set the new entry speed.
- current->entry_speed_sqr = new_entry_speed_sqr;
- }
- }
- }
- }
- }
- /**
- * recalculate() needs to go over the current plan twice.
- * Once in reverse and once forward. This implements the reverse pass.
- */
- void Planner::reverse_pass() {
- // Initialize block index to the last block in the planner buffer.
- uint8_t block_index = prev_block_index(block_buffer_head);
- // Read the index of the last buffer planned block.
- // The ISR may change it so get a stable local copy.
- uint8_t planned_block_index = block_buffer_planned;
- // If there was a race condition and block_buffer_planned was incremented
- // or was pointing at the head (queue empty) break loop now and avoid
- // planning already consumed blocks
- if (planned_block_index == block_buffer_head) return;
- // Reverse Pass: Coarsely maximize all possible deceleration curves back-planning from the last
- // block in buffer. Cease planning when the last optimal planned or tail pointer is reached.
- // NOTE: Forward pass will later refine and correct the reverse pass to create an optimal plan.
- const block_t *next = NULL;
- while (block_index != planned_block_index) {
- // Perform the reverse pass
- block_t *current = &block_buffer[block_index];
- // Only consider non sync blocks
- if (!TEST(current->flag, BLOCK_BIT_SYNC_POSITION)) {
- reverse_pass_kernel(current, next);
- next = current;
- }
- // Advance to the next
- block_index = prev_block_index(block_index);
- // The ISR could advance the block_buffer_planned while we were doing the reverse pass.
- // We must try to avoid using an already consumed block as the last one - So follow
- // changes to the pointer and make sure to limit the loop to the currently busy block
- while (planned_block_index != block_buffer_planned) {
- // If we reached the busy block or an already processed block, break the loop now
- if (block_index == planned_block_index) return;
- // Advance the pointer, following the busy block
- planned_block_index = next_block_index(planned_block_index);
- }
- }
- }
- // The kernel called by recalculate() when scanning the plan from first to last entry.
- void Planner::forward_pass_kernel(const block_t* const previous, block_t* const current, const uint8_t block_index) {
- if (previous) {
- // If the previous block is an acceleration block, too short to complete the full speed
- // change, adjust the entry speed accordingly. Entry speeds have already been reset,
- // maximized, and reverse-planned. If nominal length is set, max junction speed is
- // guaranteed to be reached. No need to recheck.
- if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH) &&
- previous->entry_speed_sqr < current->entry_speed_sqr) {
- // Compute the maximum allowable speed
- const float new_entry_speed_sqr = max_allowable_speed_sqr(-previous->acceleration, previous->entry_speed_sqr, previous->millimeters);
- // If true, current block is full-acceleration and we can move the planned pointer forward.
- if (new_entry_speed_sqr < current->entry_speed_sqr) {
- // Mark we need to recompute the trapezoidal shape, and do it now,
- // so the stepper ISR does not consume the block before being recalculated
- SBI(current->flag, BLOCK_BIT_RECALCULATE);
- // But there is an inherent race condition here, as the block maybe
- // became BUSY, just before it was marked as RECALCULATE, so check
- // if that is the case!
- if (stepper.is_block_busy(current)) {
- // Block became busy. Clear the RECALCULATE flag (no point in
- // recalculating BUSY blocks and don't set its speed, as it can't
- // be updated at this time.
- CBI(current->flag, BLOCK_BIT_RECALCULATE);
- }
- else {
- // Block is not BUSY, we won the race against the Stepper ISR:
- // Always <= max_entry_speed_sqr. Backward pass sets this.
- current->entry_speed_sqr = new_entry_speed_sqr; // Always <= max_entry_speed_sqr. Backward pass sets this.
- // Set optimal plan pointer.
- block_buffer_planned = block_index;
- }
- }
- }
- // Any block set at its maximum entry speed also creates an optimal plan up to this
- // point in the buffer. When the plan is bracketed by either the beginning of the
- // buffer and a maximum entry speed or two maximum entry speeds, every block in between
- // cannot logically be further improved. Hence, we don't have to recompute them anymore.
- if (current->entry_speed_sqr == current->max_entry_speed_sqr)
- block_buffer_planned = block_index;
- }
- }
- /**
- * recalculate() needs to go over the current plan twice.
- * Once in reverse and once forward. This implements the forward pass.
- */
- void Planner::forward_pass() {
- // Forward Pass: Forward plan the acceleration curve from the planned pointer onward.
- // Also scans for optimal plan breakpoints and appropriately updates the planned pointer.
- // Begin at buffer planned pointer. Note that block_buffer_planned can be modified
- // by the stepper ISR, so read it ONCE. It it guaranteed that block_buffer_planned
- // will never lead head, so the loop is safe to execute. Also note that the forward
- // pass will never modify the values at the tail.
- uint8_t block_index = block_buffer_planned;
- block_t *current;
- const block_t * previous = NULL;
- while (block_index != block_buffer_head) {
- // Perform the forward pass
- current = &block_buffer[block_index];
- // Skip SYNC blocks
- if (!TEST(current->flag, BLOCK_BIT_SYNC_POSITION)) {
- // If there's no previous block or the previous block is not
- // BUSY (thus, modifiable) run the forward_pass_kernel. Otherwise,
- // the previous block became BUSY, so assume the current block's
- // entry speed can't be altered (since that would also require
- // updating the exit speed of the previous block).
- if (!previous || !stepper.is_block_busy(previous))
- forward_pass_kernel(previous, current, block_index);
- previous = current;
- }
- // Advance to the previous
- block_index = next_block_index(block_index);
- }
- }
- /**
- * Recalculate the trapezoid speed profiles for all blocks in the plan
- * according to the entry_factor for each junction. Must be called by
- * recalculate() after updating the blocks.
- */
- void Planner::recalculate_trapezoids() {
- // The tail may be changed by the ISR so get a local copy.
- uint8_t block_index = block_buffer_tail,
- head_block_index = block_buffer_head;
- // Since there could be a sync block in the head of the queue, and the
- // next loop must not recalculate the head block (as it needs to be
- // specially handled), scan backwards to the first non-SYNC block.
- while (head_block_index != block_index) {
- // Go back (head always point to the first free block)
- const uint8_t prev_index = prev_block_index(head_block_index);
- // Get the pointer to the block
- block_t *prev = &block_buffer[prev_index];
- // If not dealing with a sync block, we are done. The last block is not a SYNC block
- if (!TEST(prev->flag, BLOCK_BIT_SYNC_POSITION)) break;
- // Examine the previous block. This and all following are SYNC blocks
- head_block_index = prev_index;
- }
- // Go from the tail (currently executed block) to the first block, without including it)
- block_t *current = NULL, *next = NULL;
- float current_entry_speed = 0.0, next_entry_speed = 0.0;
- while (block_index != head_block_index) {
- next = &block_buffer[block_index];
- // Skip sync blocks
- if (!TEST(next->flag, BLOCK_BIT_SYNC_POSITION)) {
- next_entry_speed = SQRT(next->entry_speed_sqr);
- if (current) {
- // Recalculate if current block entry or exit junction speed has changed.
- if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) {
- // Mark the current block as RECALCULATE, to protect it from the Stepper ISR running it.
- // Note that due to the above condition, there's a chance the current block isn't marked as
- // RECALCULATE yet, but the next one is. That's the reason for the following line.
- SBI(current->flag, BLOCK_BIT_RECALCULATE);
- // But there is an inherent race condition here, as the block maybe
- // became BUSY, just before it was marked as RECALCULATE, so check
- // if that is the case!
- if (!stepper.is_block_busy(current)) {
- // Block is not BUSY, we won the race against the Stepper ISR:
- // NOTE: Entry and exit factors always > 0 by all previous logic operations.
- const float current_nominal_speed = SQRT(current->nominal_speed_sqr),
- nomr = 1.0f / current_nominal_speed;
- calculate_trapezoid_for_block(current, current_entry_speed * nomr, next_entry_speed * nomr);
- #if ENABLED(LIN_ADVANCE)
- if (current->use_advance_lead) {
- const float comp = current->e_D_ratio * extruder_advance_K * axis_steps_per_mm[E_AXIS];
- current->max_adv_steps = current_nominal_speed * comp;
- current->final_adv_steps = next_entry_speed * comp;
- }
- #endif
- }
- // Reset current only to ensure next trapezoid is computed - The
- // stepper is free to use the block from now on.
- CBI(current->flag, BLOCK_BIT_RECALCULATE);
- }
- }
- current = next;
- current_entry_speed = next_entry_speed;
- }
- block_index = next_block_index(block_index);
- }
- // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
- if (next) {
- // Mark the next(last) block as RECALCULATE, to prevent the Stepper ISR running it.
- // As the last block is always recalculated here, there is a chance the block isn't
- // marked as RECALCULATE yet. That's the reason for the following line.
- SBI(next->flag, BLOCK_BIT_RECALCULATE);
- // But there is an inherent race condition here, as the block maybe
- // became BUSY, just before it was marked as RECALCULATE, so check
- // if that is the case!
- if (!stepper.is_block_busy(current)) {
- // Block is not BUSY, we won the race against the Stepper ISR:
- const float next_nominal_speed = SQRT(next->nominal_speed_sqr),
- nomr = 1.0f / next_nominal_speed;
- calculate_trapezoid_for_block(next, next_entry_speed * nomr, float(MINIMUM_PLANNER_SPEED) * nomr);
- #if ENABLED(LIN_ADVANCE)
- if (next->use_advance_lead) {
- const float comp = next->e_D_ratio * extruder_advance_K * axis_steps_per_mm[E_AXIS];
- next->max_adv_steps = next_nominal_speed * comp;
- next->final_adv_steps = (MINIMUM_PLANNER_SPEED) * comp;
- }
- #endif
- }
- // Reset next only to ensure its trapezoid is computed - The stepper is free to use
- // the block from now on.
- CBI(next->flag, BLOCK_BIT_RECALCULATE);
- }
- }
- void Planner::recalculate() {
- // Initialize block index to the last block in the planner buffer.
- const uint8_t block_index = prev_block_index(block_buffer_head);
- // If there is just one block, no planning can be done. Avoid it!
- if (block_index != block_buffer_planned) {
- reverse_pass();
- forward_pass();
- }
- recalculate_trapezoids();
- }
- #if ENABLED(AUTOTEMP)
- void Planner::getHighESpeed() {
- static float oldt = 0;
- if (!autotemp_enabled) return;
- if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
- float high = 0.0;
- for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
- block_t* block = &block_buffer[b];
- if (
- #if ENABLED(HANGPRINTER)
- block->steps[A_AXIS] || block->steps[B_AXIS] || block->steps[C_AXIS] || block->steps[D_AXIS]
- #else
- block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]
- #endif
- ) {
- const float se = (float)block->steps[E_AXIS] / block->step_event_count * SQRT(block->nominal_speed_sqr); // mm/sec;
- NOLESS(high, se);
- }
- }
- float t = autotemp_min + high * autotemp_factor;
- t = constrain(t, autotemp_min, autotemp_max);
- if (t < oldt) t = t * (1 - float(AUTOTEMP_OLDWEIGHT)) + oldt * float(AUTOTEMP_OLDWEIGHT);
- oldt = t;
- thermalManager.setTargetHotend(t, 0);
- }
- #endif // AUTOTEMP
- /**
- * Maintain fans, paste extruder pressure,
- */
- void Planner::check_axes_activity() {
- unsigned char axis_active[NUM_AXIS] = { 0 },
- tail_fan_speed[FAN_COUNT];
- #if ENABLED(BARICUDA)
- #if HAS_HEATER_1
- uint8_t tail_valve_pressure;
- #endif
- #if HAS_HEATER_2
- uint8_t tail_e_to_p_pressure;
- #endif
- #endif
- if (has_blocks_queued()) {
- #if FAN_COUNT > 0
- for (uint8_t i = 0; i < FAN_COUNT; i++)
- tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
- #endif
- block_t* block;
- #if ENABLED(BARICUDA)
- block = &block_buffer[block_buffer_tail];
- #if HAS_HEATER_1
- tail_valve_pressure = block->valve_pressure;
- #endif
- #if HAS_HEATER_2
- tail_e_to_p_pressure = block->e_to_p_pressure;
- #endif
- #endif
- for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
- block = &block_buffer[b];
- LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++;
- }
- }
- else {
- #if FAN_COUNT > 0
- for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
- #endif
- #if ENABLED(BARICUDA)
- #if HAS_HEATER_1
- tail_valve_pressure = baricuda_valve_pressure;
- #endif
- #if HAS_HEATER_2
- tail_e_to_p_pressure = baricuda_e_to_p_pressure;
- #endif
- #endif
- }
- #if ENABLED(DISABLE_X)
- if (!axis_active[X_AXIS]) disable_X();
- #endif
- #if ENABLED(DISABLE_Y)
- if (!axis_active[Y_AXIS]) disable_Y();
- #endif
- #if ENABLED(DISABLE_Z)
- if (!axis_active[Z_AXIS]) disable_Z();
- #endif
- #if ENABLED(DISABLE_E)
- if (!axis_active[E_AXIS]) disable_e_steppers();
- #endif
- #if FAN_COUNT > 0
- #if FAN_KICKSTART_TIME > 0
- static millis_t fan_kick_end[FAN_COUNT] = { 0 };
- #define KICKSTART_FAN(f) \
- if (tail_fan_speed[f]) { \
- millis_t ms = millis(); \
- if (fan_kick_end[f] == 0) { \
- fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
- tail_fan_speed[f] = 255; \
- } else if (PENDING(ms, fan_kick_end[f])) \
- tail_fan_speed[f] = 255; \
- } else fan_kick_end[f] = 0
- #if HAS_FAN0
- KICKSTART_FAN(0);
- #endif
- #if HAS_FAN1
- KICKSTART_FAN(1);
- #endif
- #if HAS_FAN2
- KICKSTART_FAN(2);
- #endif
- #endif // FAN_KICKSTART_TIME > 0
- #if FAN_MIN_PWM != 0 || FAN_MAX_PWM != 255
- #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? map(tail_fan_speed[f], 1, 255, FAN_MIN_PWM, FAN_MAX_PWM) : 0)
- #else
- #define CALC_FAN_SPEED(f) tail_fan_speed[f]
- #endif
- #if ENABLED(FAN_SOFT_PWM)
- #if HAS_FAN0
- thermalManager.soft_pwm_amount_fan[0] = CALC_FAN_SPEED(0);
- #endif
- #if HAS_FAN1
- thermalManager.soft_pwm_amount_fan[1] = CALC_FAN_SPEED(1);
- #endif
- #if HAS_FAN2
- thermalManager.soft_pwm_amount_fan[2] = CALC_FAN_SPEED(2);
- #endif
- #else
- #if HAS_FAN0
- analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
- #endif
- #if HAS_FAN1
- analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
- #endif
- #if HAS_FAN2
- analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
- #endif
- #endif
- #endif // FAN_COUNT > 0
- #if ENABLED(AUTOTEMP)
- getHighESpeed();
- #endif
- #if ENABLED(BARICUDA)
- #if HAS_HEATER_1
- analogWrite(HEATER_1_PIN, tail_valve_pressure);
- #endif
- #if HAS_HEATER_2
- analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
- #endif
- #endif
- }
- #if DISABLED(NO_VOLUMETRICS)
- /**
- * Get a volumetric multiplier from a filament diameter.
- * This is the reciprocal of the circular cross-section area.
- * Return 1.0 with volumetric off or a diameter of 0.0.
- */
- inline float calculate_volumetric_multiplier(const float &diameter) {
- return (parser.volumetric_enabled && diameter) ? 1.0f / CIRCLE_AREA(diameter * 0.5) : 1.0;
- }
- /**
- * Convert the filament sizes into volumetric multipliers.
- * The multiplier converts a given E value into a length.
- */
- void Planner::calculate_volumetric_multipliers() {
- for (uint8_t i = 0; i < COUNT(filament_size); i++) {
- volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
- refresh_e_factor(i);
- }
- }
- #endif // !NO_VOLUMETRICS
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- /**
- * Convert the ratio value given by the filament width sensor
- * into a volumetric multiplier. Conversion differs when using
- * linear extrusion vs volumetric extrusion.
- */
- void Planner::calculate_volumetric_for_width_sensor(const int8_t encoded_ratio) {
- // Reconstitute the nominal/measured ratio
- const float nom_meas_ratio = 1 + 0.01f * encoded_ratio,
- ratio_2 = sq(nom_meas_ratio);
- volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled
- ? ratio_2 / CIRCLE_AREA(filament_width_nominal * 0.5f) // Volumetric uses a true volumetric multiplier
- : ratio_2; // Linear squares the ratio, which scales the volume
- refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
- }
- #endif
- #if PLANNER_LEVELING || HAS_UBL_AND_CURVES
- /**
- * rx, ry, rz - Cartesian positions in mm
- * Leveled XYZ on completion
- */
- void Planner::apply_leveling(float &rx, float &ry, float &rz) {
- #if ENABLED(SKEW_CORRECTION)
- skew(rx, ry, rz);
- #endif
- if (!leveling_active) return;
- #if ABL_PLANAR
- float dx = rx - (X_TILT_FULCRUM),
- dy = ry - (Y_TILT_FULCRUM);
- apply_rotation_xyz(bed_level_matrix, dx, dy, rz);
- rx = dx + X_TILT_FULCRUM;
- ry = dy + Y_TILT_FULCRUM;
- #elif HAS_MESH
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
- #else
- constexpr float fade_scaling_factor = 1.0;
- #endif
- #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
- const float raw[XYZ] = { rx, ry, 0 };
- #endif
- rz += (
- #if ENABLED(MESH_BED_LEVELING)
- mbl.get_z(rx, ry
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- , fade_scaling_factor
- #endif
- )
- #elif ENABLED(AUTO_BED_LEVELING_UBL)
- fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(rx, ry) : 0.0
- #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
- fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0
- #endif
- );
- #endif
- }
- #endif
- #if PLANNER_LEVELING
- void Planner::unapply_leveling(float raw[XYZ]) {
- if (leveling_active) {
- #if ABL_PLANAR
- matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
- float dx = raw[X_AXIS] - (X_TILT_FULCRUM),
- dy = raw[Y_AXIS] - (Y_TILT_FULCRUM);
- apply_rotation_xyz(inverse, dx, dy, raw[Z_AXIS]);
- raw[X_AXIS] = dx + X_TILT_FULCRUM;
- raw[Y_AXIS] = dy + Y_TILT_FULCRUM;
- #elif HAS_MESH
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- const float fade_scaling_factor = fade_scaling_factor_for_z(raw[Z_AXIS]);
- #else
- constexpr float fade_scaling_factor = 1.0;
- #endif
- raw[Z_AXIS] -= (
- #if ENABLED(MESH_BED_LEVELING)
- mbl.get_z(raw[X_AXIS], raw[Y_AXIS]
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- , fade_scaling_factor
- #endif
- )
- #elif ENABLED(AUTO_BED_LEVELING_UBL)
- fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]) : 0.0
- #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
- fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0
- #endif
- );
- #endif
- }
- #if ENABLED(SKEW_CORRECTION)
- unskew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]);
- #endif
- }
- #endif // PLANNER_LEVELING
- void Planner::quick_stop() {
- // Remove all the queued blocks. Note that this function is NOT
- // called from the Stepper ISR, so we must consider tail as readonly!
- // that is why we set head to tail - But there is a race condition that
- // must be handled: The tail could change between the read and the assignment
- // so this must be enclosed in a critical section
- const bool was_enabled = STEPPER_ISR_ENABLED();
- if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
- // Drop all queue entries
- block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail;
- // Restart the block delay for the first movement - As the queue was
- // forced to empty, there's no risk the ISR will touch this.
- delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
- #if ENABLED(ULTRA_LCD)
- // Clear the accumulated runtime
- clear_block_buffer_runtime();
- #endif
- // Make sure to drop any attempt of queuing moves for at least 1 second
- cleaning_buffer_counter = 1000;
- // Reenable Stepper ISR
- if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
- // And stop the stepper ISR
- stepper.quick_stop();
- }
- void Planner::endstop_triggered(const AxisEnum axis) {
- // Record stepper position and discard the current block
- stepper.endstop_triggered(axis);
- }
- float Planner::triggered_position_mm(const AxisEnum axis) {
- return stepper.triggered_position(axis) * steps_to_mm[axis];
- }
- void Planner::finish_and_disable() {
- while (has_blocks_queued() || cleaning_buffer_counter) idle();
- disable_all_steppers();
- }
- /**
- * Get an axis position according to stepper position(s)
- * For CORE machines apply translation from ABC to XYZ.
- */
- float Planner::get_axis_position_mm(const AxisEnum axis) {
- float axis_steps;
- #if IS_CORE
- // Requesting one of the "core" axes?
- if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
- // Protect the access to the position.
- const bool was_enabled = STEPPER_ISR_ENABLED();
- if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
- // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
- // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
- axis_steps = 0.5f * (
- axis == CORE_AXIS_2 ? CORESIGN(stepper.position(CORE_AXIS_1) - stepper.position(CORE_AXIS_2))
- : stepper.position(CORE_AXIS_1) + stepper.position(CORE_AXIS_2)
- );
- if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
- else
- axis_steps = stepper.position(axis);
- #else
- axis_steps = stepper.position(axis);
- #endif
- #if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
- if (axis != E_AXIS) return (sq(axis_steps / k0[axis] + sqrtk1[axis]) - k1[axis]) / k2[axis];
- #endif
- return axis_steps * steps_to_mm[axis];
- }
- /**
- * Block until all buffered steps are executed / cleaned
- */
- void Planner::synchronize() { while (has_blocks_queued() || cleaning_buffer_counter) idle(); }
- #if ENABLED(UNREGISTERED_MOVE_SUPPORT)
- #define COUNT_MOVE count_it
- #else
- #define COUNT_MOVE true
- #endif
- /**
- * Planner::_buffer_steps
- *
- * Add a new linear movement to the planner queue (in terms of steps).
- *
- * target - target position in steps units
- * target_float - target position in mm (HAS_POSITION_FLOAT)
- * fr_mm_s - (target) speed of the move
- * extruder - target extruder
- * millimeters - the length of the movement, if known
- * count_it - apply this move to the counters (UNREGISTERED_MOVE_SUPPORT)
- *
- * Returns true if movement was properly queued, false otherwise
- */
- bool Planner::_buffer_steps(const int32_t (&target)[NUM_AXIS]
- #if HAS_POSITION_FLOAT
- , const float (&target_float)[NUM_AXIS]
- #endif
- , float fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/
- #if ENABLED(UNREGISTERED_MOVE_SUPPORT)
- , const bool count_it/*=true*/
- #endif
- ) {
- // If we are cleaning, do not accept queuing of movements
- if (cleaning_buffer_counter) return false;
- // Wait for the next available block
- uint8_t next_buffer_head;
- block_t * const block = get_next_free_block(next_buffer_head);
- // Fill the block with the specified movement
- if (!_populate_block(block, false, target
- #if HAS_POSITION_FLOAT
- , target_float
- #endif
- , fr_mm_s, extruder, millimeters
- #if ENABLED(UNREGISTERED_MOVE_SUPPORT)
- , count_it
- #endif
- )) {
- // Movement was not queued, probably because it was too short.
- // Simply accept that as movement queued and done
- return true;
- }
- // If this is the first added movement, reload the delay, otherwise, cancel it.
- if (block_buffer_head == block_buffer_tail) {
- // If it was the first queued block, restart the 1st block delivery delay, to
- // give the planner an opportunity to queue more movements and plan them
- // As there are no queued movements, the Stepper ISR will not touch this
- // variable, so there is no risk setting this here (but it MUST be done
- // before the following line!!)
- delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
- }
- // Move buffer head
- block_buffer_head = next_buffer_head;
- // Recalculate and optimize trapezoidal speed profiles
- recalculate();
- // Movement successfully queued!
- return true;
- }
- /**
- * Planner::_populate_block
- *
- * Fills a new linear movement in the block (in terms of steps).
- *
- * target - target position in steps units
- * target_float - target position in mm (HAS_POSITION_FLOAT)
- * fr_mm_s - (target) speed of the move
- * extruder - target extruder
- * millimeters - the length of the movement, if known
- * count_it - apply this move to the counters (UNREGISTERED_MOVE_SUPPORT)
- *
- * Returns true is movement is acceptable, false otherwise
- */
- bool Planner::_populate_block(block_t * const block, bool split_move,
- const int32_t (&target)[NUM_AXIS]
- #if HAS_POSITION_FLOAT
- , const float (&target_float)[NUM_AXIS]
- #endif
- , float fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/
- #if ENABLED(UNREGISTERED_MOVE_SUPPORT)
- , const bool count_it/*=true*/
- #endif
- ) {
- const int32_t da = target[A_AXIS] - position[A_AXIS],
- db = target[B_AXIS] - position[B_AXIS],
- dc = target[C_AXIS] - position[C_AXIS]
- #if ENABLED(HANGPRINTER)
- , dd = target[D_AXIS] - position[D_AXIS]
- #endif
- ;
- int32_t de = target[E_AXIS] - position[E_AXIS];
- /* <-- add a slash to enable
- SERIAL_ECHOPAIR(" _populate_block FR:", fr_mm_s);
- SERIAL_ECHOPAIR(" A:", target[A_AXIS]);
- SERIAL_ECHOPAIR(" (", da);
- SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]);
- SERIAL_ECHOPAIR(" (", db);
- SERIAL_ECHOPAIR(" steps) C:", target[C_AXIS]);
- SERIAL_ECHOPAIR(" (", dc);
- SERIAL_ECHOPAIR(" steps) E:", target[E_AXIS]);
- SERIAL_ECHOPAIR(" (", de);
- SERIAL_ECHOLNPGM(" steps)");
- //*/
- #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
- if (de) {
- #if ENABLED(PREVENT_COLD_EXTRUSION)
- if (thermalManager.tooColdToExtrude(extruder)) {
- if (COUNT_MOVE) {
- position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
- #if HAS_POSITION_FLOAT
- position_float[E_AXIS] = target_float[E_AXIS];
- #endif
- }
- de = 0; // no difference
- SERIAL_ECHO_START();
- SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
- }
- #endif // PREVENT_COLD_EXTRUSION
- #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
- if (ABS(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
- if (COUNT_MOVE) {
- position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
- #if HAS_POSITION_FLOAT
- position_float[E_AXIS] = target_float[E_AXIS];
- #endif
- }
- de = 0; // no difference
- SERIAL_ECHO_START();
- SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
- }
- #endif // PREVENT_LENGTHY_EXTRUDE
- }
- #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
- // Compute direction bit-mask for this block
- uint8_t dm = 0;
- #if CORE_IS_XY
- if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
- if (db < 0) SBI(dm, Y_HEAD); // ...and Y
- if (dc < 0) SBI(dm, Z_AXIS);
- if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
- if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction
- #elif CORE_IS_XZ
- if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
- if (db < 0) SBI(dm, Y_AXIS);
- if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
- if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
- if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
- #elif CORE_IS_YZ
- if (da < 0) SBI(dm, X_AXIS);
- if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
- if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
- if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
- if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
- #elif ENABLED(HANGPRINTER)
- if (da < 0) SBI(dm, A_AXIS);
- if (db < 0) SBI(dm, B_AXIS);
- if (dc < 0) SBI(dm, C_AXIS);
- if (dd < 0) SBI(dm, D_AXIS);
- #else
- if (da < 0) SBI(dm, X_AXIS);
- if (db < 0) SBI(dm, Y_AXIS);
- if (dc < 0) SBI(dm, Z_AXIS);
- #endif
- if (de < 0) SBI(dm, E_AXIS);
- const float esteps_float = de * e_factor[extruder];
- const uint32_t esteps = ABS(esteps_float) + 0.5f;
- // Clear all flags, including the "busy" bit
- block->flag = 0x00;
- // Set direction bits
- block->direction_bits = dm;
- // Specify if block is to be counted or not
- #if ENABLED(UNREGISTERED_MOVE_SUPPORT)
- block->count_it = count_it;
- #endif
- // Number of steps for each axis
- // See http://www.corexy.com/theory.html
- #if CORE_IS_XY
- block->steps[A_AXIS] = ABS(da + db);
- block->steps[B_AXIS] = ABS(da - db);
- block->steps[Z_AXIS] = ABS(dc);
- #elif CORE_IS_XZ
- block->steps[A_AXIS] = ABS(da + dc);
- block->steps[Y_AXIS] = ABS(db);
- block->steps[C_AXIS] = ABS(da - dc);
- #elif CORE_IS_YZ
- block->steps[X_AXIS] = ABS(da);
- block->steps[B_AXIS] = ABS(db + dc);
- block->steps[C_AXIS] = ABS(db - dc);
- #elif IS_SCARA
- block->steps[A_AXIS] = ABS(da);
- block->steps[B_AXIS] = ABS(db);
- block->steps[Z_AXIS] = ABS(dc);
- #elif ENABLED(HANGPRINTER)
- block->steps[A_AXIS] = ABS(da);
- block->steps[B_AXIS] = ABS(db);
- block->steps[C_AXIS] = ABS(dc);
- block->steps[D_AXIS] = ABS(dd);
- #else
- // default non-h-bot planning
- block->steps[A_AXIS] = ABS(da);
- block->steps[B_AXIS] = ABS(db);
- block->steps[C_AXIS] = ABS(dc);
- #endif
- block->steps[E_AXIS] = esteps;
- block->step_event_count = (
- #if ENABLED(HANGPRINTER)
- MAX5(block->steps[A_AXIS], block->steps[B_AXIS], block->steps[C_AXIS], block->steps[D_AXIS], esteps)
- #else
- MAX4(block->steps[A_AXIS], block->steps[B_AXIS], block->steps[C_AXIS], esteps)
- #endif
- );
- // Bail if this is a zero-length block
- if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return false;
- // For a mixing extruder, get a magnified esteps for each
- #if ENABLED(MIXING_EXTRUDER)
- for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
- block->mix_steps[i] = mixing_factor[i] * esteps;
- #endif
- #if FAN_COUNT > 0
- for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
- #endif
- #if ENABLED(BARICUDA)
- block->valve_pressure = baricuda_valve_pressure;
- block->e_to_p_pressure = baricuda_e_to_p_pressure;
- #endif
- block->active_extruder = extruder;
- #if ENABLED(AUTO_POWER_CONTROL)
- if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS])
- powerManager.power_on();
- #endif
- // Enable active axes
- #if CORE_IS_XY
- if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
- enable_X();
- enable_Y();
- }
- #if DISABLED(Z_LATE_ENABLE)
- if (block->steps[Z_AXIS]) enable_Z();
- #endif
- #elif CORE_IS_XZ
- if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
- enable_X();
- enable_Z();
- }
- if (block->steps[Y_AXIS]) enable_Y();
- #elif CORE_IS_YZ
- if (block->steps[B_AXIS] || block->steps[C_AXIS]) {
- enable_Y();
- enable_Z();
- }
- if (block->steps[X_AXIS]) enable_X();
- #elif DISABLED(HANGPRINTER) // Hangprinters X, Y, Z, E0 axes should always be enabled anyways
- if (block->steps[X_AXIS]) enable_X();
- if (block->steps[Y_AXIS]) enable_Y();
- #if DISABLED(Z_LATE_ENABLE)
- if (block->steps[Z_AXIS]) enable_Z();
- #endif
- #endif
- // Enable extruder(s)
- if (esteps) {
- #if ENABLED(AUTO_POWER_CONTROL)
- powerManager.power_on();
- #endif
- #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
- #define DISABLE_IDLE_E(N) if (!g_uc_extruder_last_move[N]) disable_E##N();
- for (uint8_t i = 0; i < EXTRUDERS; i++)
- if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
- switch (extruder) {
- case 0:
- #if EXTRUDERS > 1
- DISABLE_IDLE_E(1);
- #if EXTRUDERS > 2
- DISABLE_IDLE_E(2);
- #if EXTRUDERS > 3
- DISABLE_IDLE_E(3);
- #if EXTRUDERS > 4
- DISABLE_IDLE_E(4);
- #endif // EXTRUDERS > 4
- #endif // EXTRUDERS > 3
- #endif // EXTRUDERS > 2
- #endif // EXTRUDERS > 1
- enable_E0();
- g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
- #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
- if (extruder_duplication_enabled) {
- enable_E1();
- g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
- }
- #endif
- break;
- #if EXTRUDERS > 1
- case 1:
- DISABLE_IDLE_E(0);
- #if EXTRUDERS > 2
- DISABLE_IDLE_E(2);
- #if EXTRUDERS > 3
- DISABLE_IDLE_E(3);
- #if EXTRUDERS > 4
- DISABLE_IDLE_E(4);
- #endif // EXTRUDERS > 4
- #endif // EXTRUDERS > 3
- #endif // EXTRUDERS > 2
- enable_E1();
- g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
- break;
- #if EXTRUDERS > 2
- case 2:
- DISABLE_IDLE_E(0);
- DISABLE_IDLE_E(1);
- #if EXTRUDERS > 3
- DISABLE_IDLE_E(3);
- #if EXTRUDERS > 4
- DISABLE_IDLE_E(4);
- #endif
- #endif
- enable_E2();
- g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
- break;
- #if EXTRUDERS > 3
- case 3:
- DISABLE_IDLE_E(0);
- DISABLE_IDLE_E(1);
- DISABLE_IDLE_E(2);
- #if EXTRUDERS > 4
- DISABLE_IDLE_E(4);
- #endif
- enable_E3();
- g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
- break;
- #if EXTRUDERS > 4
- case 4:
- DISABLE_IDLE_E(0);
- DISABLE_IDLE_E(1);
- DISABLE_IDLE_E(2);
- DISABLE_IDLE_E(3);
- enable_E4();
- g_uc_extruder_last_move[4] = (BLOCK_BUFFER_SIZE) * 2;
- break;
- #endif // EXTRUDERS > 4
- #endif // EXTRUDERS > 3
- #endif // EXTRUDERS > 2
- #endif // EXTRUDERS > 1
- }
- #else
- enable_E0();
- enable_E1();
- enable_E2();
- enable_E3();
- enable_E4();
- #endif
- }
- if (esteps)
- NOLESS(fr_mm_s, min_feedrate_mm_s);
- else
- NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
- /**
- * This part of the code calculates the total length of the movement.
- * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
- * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
- * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
- * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
- * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
- */
- #if IS_CORE
- float delta_mm[Z_HEAD + 1];
- #if CORE_IS_XY
- delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
- delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
- delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
- delta_mm[A_AXIS] = (da + db) * steps_to_mm[A_AXIS];
- delta_mm[B_AXIS] = CORESIGN(da - db) * steps_to_mm[B_AXIS];
- #elif CORE_IS_XZ
- delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
- delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
- delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
- delta_mm[A_AXIS] = (da + dc) * steps_to_mm[A_AXIS];
- delta_mm[C_AXIS] = CORESIGN(da - dc) * steps_to_mm[C_AXIS];
- #elif CORE_IS_YZ
- delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
- delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
- delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
- delta_mm[B_AXIS] = (db + dc) * steps_to_mm[B_AXIS];
- delta_mm[C_AXIS] = CORESIGN(db - dc) * steps_to_mm[C_AXIS];
- #endif
- #else
- float delta_mm[NUM_AXIS];
- delta_mm[A_AXIS] = da * steps_to_mm[A_AXIS];
- delta_mm[B_AXIS] = db * steps_to_mm[B_AXIS];
- delta_mm[C_AXIS] = dc * steps_to_mm[C_AXIS];
- #if ENABLED(HANGPRINTER)
- delta_mm[D_AXIS] = dd * steps_to_mm[D_AXIS];
- #endif
- #endif
- delta_mm[E_AXIS] = esteps_float * steps_to_mm[E_AXIS_N];
- if (block->steps[A_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[B_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[C_AXIS] < MIN_STEPS_PER_SEGMENT
- #if ENABLED(HANGPRINTER)
- && block->steps[D_AXIS] < MIN_STEPS_PER_SEGMENT
- #endif
- ) {
- block->millimeters = ABS(delta_mm[E_AXIS]);
- }
- else if (!millimeters) {
- block->millimeters = SQRT(
- #if CORE_IS_XY
- sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
- #elif CORE_IS_XZ
- sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
- #elif CORE_IS_YZ
- sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
- #elif ENABLED(HANGPRINTER)
- sq(delta_mm[A_AXIS]) + sq(delta_mm[B_AXIS]) + sq(delta_mm[C_AXIS]) + sq(delta_mm[D_AXIS])
- #else
- sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
- #endif
- );
- }
- else
- block->millimeters = millimeters;
- const float inverse_millimeters = 1.0f / block->millimeters; // Inverse millimeters to remove multiple divides
- // Calculate inverse time for this move. No divide by zero due to previous checks.
- // Example: At 120mm/s a 60mm move takes 0.5s. So this will give 2.0.
- float inverse_secs = fr_mm_s * inverse_millimeters;
- // Get the number of non busy movements in queue (non busy means that they can be altered)
- const uint8_t moves_queued = nonbusy_movesplanned();
- // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
- #if ENABLED(SLOWDOWN) || ENABLED(ULTRA_LCD) || defined(XY_FREQUENCY_LIMIT)
- // Segment time im micro seconds
- uint32_t segment_time_us = LROUND(1000000.0f / inverse_secs);
- #endif
- #if ENABLED(SLOWDOWN)
- if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) {
- if (segment_time_us < min_segment_time_us) {
- // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
- const uint32_t nst = segment_time_us + LROUND(2 * (min_segment_time_us - segment_time_us) / moves_queued);
- inverse_secs = 1000000.0f / nst;
- #if defined(XY_FREQUENCY_LIMIT) || ENABLED(ULTRA_LCD)
- segment_time_us = nst;
- #endif
- }
- }
- #endif
- #if ENABLED(ULTRA_LCD)
- // Protect the access to the position.
- const bool was_enabled = STEPPER_ISR_ENABLED();
- if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
- block_buffer_runtime_us += segment_time_us;
- if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
- #endif
- block->nominal_speed_sqr = sq(block->millimeters * inverse_secs); // (mm/sec)^2 Always > 0
- block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- static float filwidth_e_count = 0, filwidth_delay_dist = 0;
- //FMM update ring buffer used for delay with filament measurements
- if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
- constexpr int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
- // increment counters with next move in e axis
- filwidth_e_count += delta_mm[E_AXIS];
- filwidth_delay_dist += delta_mm[E_AXIS];
- // Only get new measurements on forward E movement
- if (!UNEAR_ZERO(filwidth_e_count)) {
- // Loop the delay distance counter (modulus by the mm length)
- while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
- // Convert into an index into the measurement array
- filwidth_delay_index[0] = int8_t(filwidth_delay_dist * 0.1f);
- // If the index has changed (must have gone forward)...
- if (filwidth_delay_index[0] != filwidth_delay_index[1]) {
- filwidth_e_count = 0; // Reset the E movement counter
- const int8_t meas_sample = thermalManager.widthFil_to_size_ratio();
- do {
- filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot
- measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement
- } while (filwidth_delay_index[0] != filwidth_delay_index[1]); // More slots to fill?
- }
- }
- }
- #endif
- // Calculate and limit speed in mm/sec for each axis
- float current_speed[NUM_AXIS], speed_factor = 1.0f; // factor <1 decreases speed
- LOOP_NUM_AXIS(i) {
- const float cs = ABS((current_speed[i] = delta_mm[i] * inverse_secs));
- #if ENABLED(DISTINCT_E_FACTORS)
- if (i == E_AXIS) i += extruder;
- #endif
- if (cs > max_feedrate_mm_s[i]) NOMORE(speed_factor, max_feedrate_mm_s[i] / cs);
- }
- // Max segment time in µs.
- #ifdef XY_FREQUENCY_LIMIT
- // Check and limit the xy direction change frequency
- const unsigned char direction_change = block->direction_bits ^ old_direction_bits;
- old_direction_bits = block->direction_bits;
- segment_time_us = LROUND((float)segment_time_us / speed_factor);
- uint32_t xs0 = axis_segment_time_us[X_AXIS][0],
- xs1 = axis_segment_time_us[X_AXIS][1],
- xs2 = axis_segment_time_us[X_AXIS][2],
- ys0 = axis_segment_time_us[Y_AXIS][0],
- ys1 = axis_segment_time_us[Y_AXIS][1],
- ys2 = axis_segment_time_us[Y_AXIS][2];
- if (TEST(direction_change, X_AXIS)) {
- xs2 = axis_segment_time_us[X_AXIS][2] = xs1;
- xs1 = axis_segment_time_us[X_AXIS][1] = xs0;
- xs0 = 0;
- }
- xs0 = axis_segment_time_us[X_AXIS][0] = xs0 + segment_time_us;
- if (TEST(direction_change, Y_AXIS)) {
- ys2 = axis_segment_time_us[Y_AXIS][2] = axis_segment_time_us[Y_AXIS][1];
- ys1 = axis_segment_time_us[Y_AXIS][1] = axis_segment_time_us[Y_AXIS][0];
- ys0 = 0;
- }
- ys0 = axis_segment_time_us[Y_AXIS][0] = ys0 + segment_time_us;
- const uint32_t max_x_segment_time = MAX3(xs0, xs1, xs2),
- max_y_segment_time = MAX3(ys0, ys1, ys2),
- min_xy_segment_time = MIN(max_x_segment_time, max_y_segment_time);
- if (min_xy_segment_time < MAX_FREQ_TIME_US) {
- const float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME_US);
- NOMORE(speed_factor, low_sf);
- }
- #endif // XY_FREQUENCY_LIMIT
- // Correct the speed
- if (speed_factor < 1.0f) {
- LOOP_NUM_AXIS(i) current_speed[i] *= speed_factor;
- block->nominal_rate *= speed_factor;
- block->nominal_speed_sqr = block->nominal_speed_sqr * sq(speed_factor);
- }
- // Compute and limit the acceleration rate for the trapezoid generator.
- const float steps_per_mm = block->step_event_count * inverse_millimeters;
- uint32_t accel;
- if (!block->steps[A_AXIS] && !block->steps[B_AXIS] && !block->steps[C_AXIS]
- #if ENABLED(HANGPRINTER)
- && !block->steps[D_AXIS]
- #endif
- ) {
- // convert to: acceleration steps/sec^2
- accel = CEIL(retract_acceleration * steps_per_mm);
- #if ENABLED(LIN_ADVANCE)
- block->use_advance_lead = false;
- #endif
- }
- else {
- #define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
- if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
- const uint32_t comp = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count; \
- if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \
- } \
- }while(0)
- #define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \
- if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
- const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \
- if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \
- } \
- }while(0)
- // Start with print or travel acceleration
- accel = CEIL((esteps ? acceleration : travel_acceleration) * steps_per_mm);
- #if ENABLED(LIN_ADVANCE)
- #if ENABLED(JUNCTION_DEVIATION)
- #if ENABLED(DISTINCT_E_FACTORS)
- #define MAX_E_JERK max_e_jerk[extruder]
- #else
- #define MAX_E_JERK max_e_jerk
- #endif
- #else
- #define MAX_E_JERK max_jerk[E_AXIS]
- #endif
- /**
- *
- * Use LIN_ADVANCE for blocks if all these are true:
- *
- * esteps : This is a print move, because we checked for A, B, C steps before.
- *
- * extruder_advance_K : There is an advance factor set.
- *
- * de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
- */
- block->use_advance_lead = esteps
- && extruder_advance_K
- && de > 0;
- if (block->use_advance_lead) {
- block->e_D_ratio = (target_float[E_AXIS] - position_float[E_AXIS]) /
- #if IS_KINEMATIC
- block->millimeters
- #else
- SQRT(sq(target_float[X_AXIS] - position_float[X_AXIS])
- + sq(target_float[Y_AXIS] - position_float[Y_AXIS])
- + sq(target_float[Z_AXIS] - position_float[Z_AXIS]))
- #endif
- ;
- // Check for unusual high e_D ratio to detect if a retract move was combined with the last print move due to min. steps per segment. Never execute this with advance!
- // This assumes no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
- if (block->e_D_ratio > 3.0f)
- block->use_advance_lead = false;
- else {
- const uint32_t max_accel_steps_per_s2 = MAX_E_JERK / (extruder_advance_K * block->e_D_ratio) * steps_per_mm;
- #if ENABLED(LA_DEBUG)
- if (accel > max_accel_steps_per_s2) SERIAL_ECHOLNPGM("Acceleration limited.");
- #endif
- NOMORE(accel, max_accel_steps_per_s2);
- }
- }
- #endif
- #if ENABLED(DISTINCT_E_FACTORS)
- #define ACCEL_IDX extruder
- #else
- #define ACCEL_IDX 0
- #endif
- // Limit acceleration per axis
- if (block->step_event_count <= cutoff_long) {
- LIMIT_ACCEL_LONG(A_AXIS, 0);
- LIMIT_ACCEL_LONG(B_AXIS, 0);
- LIMIT_ACCEL_LONG(C_AXIS, 0);
- #if ENABLED(HANGPRINTER)
- LIMIT_ACCEL_LONG(D_AXIS, 0);
- #endif
- LIMIT_ACCEL_LONG(E_AXIS, ACCEL_IDX);
- }
- else {
- LIMIT_ACCEL_FLOAT(A_AXIS, 0);
- LIMIT_ACCEL_FLOAT(B_AXIS, 0);
- LIMIT_ACCEL_FLOAT(C_AXIS, 0);
- #if ENABLED(HANGPRINTER)
- LIMIT_ACCEL_FLOAT(D_AXIS, 0);
- #endif
- LIMIT_ACCEL_FLOAT(E_AXIS, ACCEL_IDX);
- }
- }
- block->acceleration_steps_per_s2 = accel;
- block->acceleration = accel / steps_per_mm;
- #if DISABLED(S_CURVE_ACCELERATION)
- block->acceleration_rate = (uint32_t)(accel * (4096.0f * 4096.0f / (STEPPER_TIMER_RATE)));
- #endif
- #if ENABLED(LIN_ADVANCE)
- if (block->use_advance_lead) {
- block->advance_speed = (STEPPER_TIMER_RATE) / (extruder_advance_K * block->e_D_ratio * block->acceleration * axis_steps_per_mm[E_AXIS_N]);
- #if ENABLED(LA_DEBUG)
- if (extruder_advance_K * block->e_D_ratio * block->acceleration * 2 < SQRT(block->nominal_speed_sqr) * block->e_D_ratio)
- SERIAL_ECHOLNPGM("More than 2 steps per eISR loop executed.");
- if (block->advance_speed < 200)
- SERIAL_ECHOLNPGM("eISR running at > 10kHz.");
- #endif
- }
- #endif
- float vmax_junction_sqr; // Initial limit on the segment entry velocity (mm/s)^2
- #if ENABLED(JUNCTION_DEVIATION)
- /**
- * Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
- * Let a circle be tangent to both previous and current path line segments, where the junction
- * deviation is defined as the distance from the junction to the closest edge of the circle,
- * colinear with the circle center. The circular segment joining the two paths represents the
- * path of centripetal acceleration. Solve for max velocity based on max acceleration about the
- * radius of the circle, defined indirectly by junction deviation. This may be also viewed as
- * path width or max_jerk in the previous Grbl version. This approach does not actually deviate
- * from path, but used as a robust way to compute cornering speeds, as it takes into account the
- * nonlinearities of both the junction angle and junction velocity.
- *
- * NOTE: If the junction deviation value is finite, Grbl executes the motions in an exact path
- * mode (G61). If the junction deviation value is zero, Grbl will execute the motion in an exact
- * stop mode (G61.1) manner. In the future, if continuous mode (G64) is desired, the math here
- * is exactly the same. Instead of motioning all the way to junction point, the machine will
- * just follow the arc circle defined here. The Arduino doesn't have the CPU cycles to perform
- * a continuous mode path, but ARM-based microcontrollers most certainly do.
- *
- * NOTE: The max junction speed is a fixed value, since machine acceleration limits cannot be
- * changed dynamically during operation nor can the line move geometry. This must be kept in
- * memory in the event of a feedrate override changing the nominal speeds of blocks, which can
- * change the overall maximum entry speed conditions of all blocks.
- *
- * #######
- * https://github.com/MarlinFirmware/Marlin/issues/10341#issuecomment-388191754
- *
- * hoffbaked: on May 10 2018 tuned and improved the GRBL algorithm for Marlin:
- Okay! It seems to be working good. I somewhat arbitrarily cut it off at 1mm
- on then on anything with less sides than an octagon. With this, and the
- reverse pass actually recalculating things, a corner acceleration value
- of 1000 junction deviation of .05 are pretty reasonable. If the cycles
- can be spared, a better acos could be used. For all I know, it may be
- already calculated in a different place. */
- // Unit vector of previous path line segment
- static float previous_unit_vec[XYZE];
- float unit_vec[] = {
- delta_mm[A_AXIS] * inverse_millimeters,
- delta_mm[B_AXIS] * inverse_millimeters,
- delta_mm[C_AXIS] * inverse_millimeters,
- delta_mm[E_AXIS] * inverse_millimeters
- };
- // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
- if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) {
- // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
- // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
- float junction_cos_theta = -previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
- -previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- -previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS]
- -previous_unit_vec[E_AXIS] * unit_vec[E_AXIS]
- ;
- // NOTE: Computed without any expensive trig, sin() or acos(), by trig half angle identity of cos(theta).
- if (junction_cos_theta > 0.999999f) {
- // For a 0 degree acute junction, just set minimum junction speed.
- vmax_junction_sqr = sq(float(MINIMUM_PLANNER_SPEED));
- }
- else {
- NOLESS(junction_cos_theta, -0.999999f); // Check for numerical round-off to avoid divide by zero.
- // Convert delta vector to unit vector
- float junction_unit_vec[XYZE] = {
- unit_vec[X_AXIS] - previous_unit_vec[X_AXIS],
- unit_vec[Y_AXIS] - previous_unit_vec[Y_AXIS],
- unit_vec[Z_AXIS] - previous_unit_vec[Z_AXIS],
- unit_vec[E_AXIS] - previous_unit_vec[E_AXIS]
- };
- normalize_junction_vector(junction_unit_vec);
- const float junction_acceleration = limit_value_by_axis_maximum(block->acceleration, junction_unit_vec),
- sin_theta_d2 = SQRT(0.5f * (1.0f - junction_cos_theta)); // Trig half angle identity. Always positive.
- vmax_junction_sqr = (junction_acceleration * junction_deviation_mm * sin_theta_d2) / (1.0f - sin_theta_d2);
- if (block->millimeters < 1) {
- // Fast acos approximation, minus the error bar to be safe
- const float junction_theta = (RADIANS(-40) * sq(junction_cos_theta) - RADIANS(50)) * junction_cos_theta + RADIANS(90) - 0.18f;
- // If angle is greater than 135 degrees (octagon), find speed for approximate arc
- if (junction_theta > RADIANS(135)) {
- const float limit_sqr = block->millimeters / (RADIANS(180) - junction_theta) * junction_acceleration;
- NOMORE(vmax_junction_sqr, limit_sqr);
- }
- }
- }
- // Get the lowest speed
- vmax_junction_sqr = MIN3(vmax_junction_sqr, block->nominal_speed_sqr, previous_nominal_speed_sqr);
- }
- else // Init entry speed to zero. Assume it starts from rest. Planner will correct this later.
- vmax_junction_sqr = 0;
- COPY(previous_unit_vec, unit_vec);
- #else // Classic Jerk Limiting
- /**
- * Adapted from Průša MKS firmware
- * https://github.com/prusa3d/Prusa-Firmware
- */
- const float nominal_speed = SQRT(block->nominal_speed_sqr);
- // Exit speed limited by a jerk to full halt of a previous last segment
- static float previous_safe_speed;
- // Start with a safe speed (from which the machine may halt to stop immediately).
- float safe_speed = nominal_speed;
- uint8_t limited = 0;
- LOOP_NUM_AXIS(i) {
- const float jerk = ABS(current_speed[i]), // cs : Starting from zero, change in speed for this axis
- maxj = max_jerk[i]; // mj : The max jerk setting for this axis
- if (jerk > maxj) { // cs > mj : New current speed too fast?
- if (limited) { // limited already?
- const float mjerk = nominal_speed * maxj; // ns*mj
- if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk; // ns*mj/cs
- }
- else {
- safe_speed *= maxj / jerk; // Initial limit: ns*mj/cs
- ++limited; // Initially limited
- }
- }
- }
- float vmax_junction;
- if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) {
- // Estimate a maximum velocity allowed at a joint of two successive segments.
- // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
- // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
- // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
- float v_factor = 1;
- limited = 0;
- // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
- // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
- const float previous_nominal_speed = SQRT(previous_nominal_speed_sqr);
- vmax_junction = MIN(nominal_speed, previous_nominal_speed);
- // Now limit the jerk in all axes.
- const float smaller_speed_factor = vmax_junction / previous_nominal_speed;
- LOOP_NUM_AXIS(axis) {
- // Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
- float v_exit = previous_speed[axis] * smaller_speed_factor,
- v_entry = current_speed[axis];
- if (limited) {
- v_exit *= v_factor;
- v_entry *= v_factor;
- }
- // Calculate jerk depending on whether the axis is coasting in the same direction or reversing.
- const float jerk = (v_exit > v_entry)
- ? // coasting axis reversal
- ( (v_entry > 0 || v_exit < 0) ? (v_exit - v_entry) : MAX(v_exit, -v_entry) )
- : // v_exit <= v_entry coasting axis reversal
- ( (v_entry < 0 || v_exit > 0) ? (v_entry - v_exit) : MAX(-v_exit, v_entry) );
- if (jerk > max_jerk[axis]) {
- v_factor *= max_jerk[axis] / jerk;
- ++limited;
- }
- }
- if (limited) vmax_junction *= v_factor;
- // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
- // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
- const float vmax_junction_threshold = vmax_junction * 0.99f;
- if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold)
- vmax_junction = safe_speed;
- }
- else
- vmax_junction = safe_speed;
- previous_safe_speed = safe_speed;
- vmax_junction_sqr = sq(vmax_junction);
- #endif // Classic Jerk Limiting
- // Max entry speed of this block equals the max exit speed of the previous block.
- block->max_entry_speed_sqr = vmax_junction_sqr;
- // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
- const float v_allowable_sqr = max_allowable_speed_sqr(-block->acceleration, sq(float(MINIMUM_PLANNER_SPEED)), block->millimeters);
- // If we are trying to add a split block, start with the
- // max. allowed speed to avoid an interrupted first move.
- block->entry_speed_sqr = !split_move ? sq(float(MINIMUM_PLANNER_SPEED)) : MIN(vmax_junction_sqr, v_allowable_sqr);
- // Initialize planner efficiency flags
- // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
- // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
- // the current block and next block junction speeds are guaranteed to always be at their maximum
- // junction speeds in deceleration and acceleration, respectively. This is due to how the current
- // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
- // the reverse and forward planners, the corresponding block junction speed will always be at the
- // the maximum junction speed and may always be ignored for any speed reduction checks.
- block->flag |= block->nominal_speed_sqr <= v_allowable_sqr ? BLOCK_FLAG_RECALCULATE | BLOCK_FLAG_NOMINAL_LENGTH : BLOCK_FLAG_RECALCULATE;
- // Update previous path unit_vector and nominal speed
- COPY(previous_speed, current_speed);
- previous_nominal_speed_sqr = block->nominal_speed_sqr;
- // Update the position (only when a move was queued)
- static_assert(COUNT(target) > 1, "Parameter to _populate_block must be (&target)["
- #if ENABLED(HANGPRINTER)
- "ABCD"
- #else
- "XYZ"
- #endif
- "E]!"
- );
- if (COUNT_MOVE) {
- COPY(position, target);
- #if HAS_POSITION_FLOAT
- COPY(position_float, target_float);
- #endif
- }
- // Movement was accepted
- return true;
- } // _populate_block()
- /**
- * Planner::buffer_sync_block
- * Add a block to the buffer that just updates the position
- */
- void Planner::buffer_sync_block() {
- // Wait for the next available block
- uint8_t next_buffer_head;
- block_t * const block = get_next_free_block(next_buffer_head);
- // Clear block
- memset(block, 0, sizeof(block_t));
- block->flag = BLOCK_FLAG_SYNC_POSITION;
- block->position[A_AXIS] = position[A_AXIS];
- block->position[B_AXIS] = position[B_AXIS];
- block->position[C_AXIS] = position[C_AXIS];
- #if ENABLED(HANGPRINTER)
- block->position[D_AXIS] = position[D_AXIS];
- #endif
- block->position[E_AXIS] = position[E_AXIS];
- // If this is the first added movement, reload the delay, otherwise, cancel it.
- if (block_buffer_head == block_buffer_tail) {
- // If it was the first queued block, restart the 1st block delivery delay, to
- // give the planner an opportunity to queue more movements and plan them
- // As there are no queued movements, the Stepper ISR will not touch this
- // variable, so there is no risk setting this here (but it MUST be done
- // before the following line!!)
- delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE;
- }
- block_buffer_head = next_buffer_head;
- stepper.wake_up();
- } // buffer_sync_block()
- /**
- * Planner::buffer_segment
- *
- * Add a new linear movement to the buffer in axis units.
- *
- * Leveling and kinematics should be applied ahead of calling this.
- *
- * a,b,c,e - target positions in mm and/or degrees
- * fr_mm_s - (target) speed of the move
- * extruder - target extruder
- * millimeters - the length of the movement, if known
- */
- bool Planner::buffer_segment(const float &a, const float &b, const float &c
- #if ENABLED(HANGPRINTER)
- , const float &d
- #endif
- , const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/
- #if ENABLED(UNREGISTERED_MOVE_SUPPORT)
- , bool count_it /* = true */
- #endif
- ) {
- // If we are cleaning, do not accept queuing of movements
- if (cleaning_buffer_counter) return false;
- // When changing extruders recalculate steps corresponding to the E position
- #if ENABLED(DISTINCT_E_FACTORS)
- if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
- position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
- last_extruder = extruder;
- }
- #endif
- // The target position of the tool in absolute steps
- // Calculate target position in absolute steps
- const int32_t target[NUM_AXIS] = {
- #if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
- LROUND(k0[A_AXIS] * (SQRT(k1[A_AXIS] + a * k2[A_AXIS]) - sqrtk1[A_AXIS])),
- LROUND(k0[B_AXIS] * (SQRT(k1[B_AXIS] + b * k2[B_AXIS]) - sqrtk1[B_AXIS])),
- LROUND(k0[C_AXIS] * (SQRT(k1[C_AXIS] + c * k2[C_AXIS]) - sqrtk1[C_AXIS])),
- LROUND(k0[D_AXIS] * (SQRT(k1[D_AXIS] + d * k2[D_AXIS]) - sqrtk1[D_AXIS])),
- #else
- LROUND(a * axis_steps_per_mm[A_AXIS]),
- LROUND(b * axis_steps_per_mm[B_AXIS]),
- LROUND(c * axis_steps_per_mm[C_AXIS]),
- #if ENABLED(HANGPRINTER)
- LROUND(d * axis_steps_per_mm[D_AXIS]),
- #endif
- #endif
- LROUND(e * axis_steps_per_mm[E_AXIS_N])
- };
- #if HAS_POSITION_FLOAT
- const float target_float[NUM_AXIS] = { a, b, c
- #if ENABLED(HANGPRINTER)
- , d
- #endif
- , e
- };
- #endif
- // DRYRUN prevents E moves from taking place
- if (DEBUGGING(DRYRUN)) {
- if (COUNT_MOVE) {
- position[E_AXIS] = target[E_AXIS];
- #if HAS_POSITION_FLOAT
- position_float[E_AXIS] = e;
- #endif
- }
- }
- /* <-- add a slash to enable
- SERIAL_ECHOPAIR(" buffer_segment FR:", fr_mm_s);
- #if IS_KINEMATIC
- SERIAL_ECHOPAIR(" A:", a);
- SERIAL_ECHOPAIR(" (", position[A_AXIS]);
- SERIAL_ECHOPAIR("->", target[A_AXIS]);
- SERIAL_ECHOPAIR(") B:", b);
- #else
- SERIAL_ECHOPAIR(" X:", a);
- SERIAL_ECHOPAIR(" (", position[X_AXIS]);
- SERIAL_ECHOPAIR("->", target[X_AXIS]);
- SERIAL_ECHOPAIR(") Y:", b);
- #endif
- SERIAL_ECHOPAIR(" (", position[Y_AXIS]);
- SERIAL_ECHOPAIR("->", target[Y_AXIS]);
- #if ENABLED(DELTA) || ENABLED(HANGPRINTER)
- SERIAL_ECHOPAIR(") C:", c);
- #else
- SERIAL_ECHOPAIR(") Z:", c);
- #endif
- SERIAL_ECHOPAIR(" (", position[Z_AXIS]);
- SERIAL_ECHOPAIR("->", target[Z_AXIS]);
- #if ENABLED(HANGPRINTER)
- SERIAL_ECHOPAIR(") D:", d);
- SERIAL_ECHOPAIR(" (", position[D_AXIS]);
- SERIAL_ECHOPAIR("->", target[D_AXIS]);
- #endif
- SERIAL_ECHOPAIR(") E:", e);
- SERIAL_ECHOPAIR(" (", position[E_AXIS]);
- SERIAL_ECHOPAIR("->", target[E_AXIS]);
- SERIAL_ECHOLNPGM(")");
- //*/
- // Queue the movement
- if (
- !_buffer_steps(target
- #if HAS_POSITION_FLOAT
- , target_float
- #endif
- , fr_mm_s, extruder, millimeters
- #if ENABLED(UNREGISTERED_MOVE_SUPPORT)
- , count_it
- #endif
- )
- ) return false;
- stepper.wake_up();
- return true;
- } // buffer_segment()
- /**
- * Directly set the planner XYZ position (and stepper positions)
- * converting mm (or angles for SCARA) into steps.
- *
- * On CORE machines stepper ABC will be translated from the given XYZ.
- */
- void Planner::_set_position_mm(const float &a, const float &b, const float &c
- #if ENABLED(HANGPRINTER)
- , const float &d
- #endif
- , const float &e
- ) {
- #if ENABLED(DISTINCT_E_FACTORS)
- last_extruder = active_extruder;
- #endif
- #if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
- position[A_AXIS] = LROUND(k0[A_AXIS] * (SQRT(k1[A_AXIS] + a * k2[A_AXIS]) - sqrtk1[A_AXIS])),
- position[B_AXIS] = LROUND(k0[B_AXIS] * (SQRT(k1[B_AXIS] + b * k2[B_AXIS]) - sqrtk1[B_AXIS])),
- position[C_AXIS] = LROUND(k0[C_AXIS] * (SQRT(k1[C_AXIS] + c * k2[C_AXIS]) - sqrtk1[C_AXIS])),
- position[D_AXIS] = LROUND(k0[D_AXIS] * (SQRT(k1[D_AXIS] + d * k2[D_AXIS]) - sqrtk1[D_AXIS])),
- #else
- position[A_AXIS] = LROUND(a * axis_steps_per_mm[A_AXIS]);
- position[B_AXIS] = LROUND(b * axis_steps_per_mm[B_AXIS]);
- position[C_AXIS] = LROUND(axis_steps_per_mm[C_AXIS] * (c + (
- #if !IS_KINEMATIC && ENABLED(AUTO_BED_LEVELING_UBL)
- leveling_active ? ubl.get_z_correction(a, b) :
- #endif
- 0)
- ));
- #if ENABLED(HANGPRINTER)
- position[D_AXIS] = LROUND(d * axis_steps_per_mm[D_AXIS]),
- #endif
- #endif
- position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
- #if HAS_POSITION_FLOAT
- position_float[A_AXIS] = a;
- position_float[B_AXIS] = b;
- position_float[C_AXIS] = c;
- #if ENABLED(HANGPRINTER)
- position_float[D_AXIS] = d;
- #endif
- position_float[E_AXIS] = e;
- #endif
- if (has_blocks_queued()) {
- //previous_nominal_speed_sqr = 0.0; // Reset planner junction speeds. Assume start from rest.
- //ZERO(previous_speed);
- buffer_sync_block();
- }
- else
- stepper.set_position(position[A_AXIS], position[B_AXIS], position[C_AXIS],
- #if ENABLED(HANGPRINTER)
- position[D_AXIS],
- #endif
- position[E_AXIS]
- );
- }
- void Planner::set_position_mm_kinematic(const float (&cart)[XYZE]) {
- #if PLANNER_LEVELING
- float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
- apply_leveling(raw);
- #elif ENABLED(HANGPRINTER)
- float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
- #else
- const float (&raw)[XYZE] = cart;
- #endif
- #if IS_KINEMATIC
- inverse_kinematics(raw);
- #if ENABLED(HANGPRINTER)
- _set_position_mm(line_lengths[A_AXIS], line_lengths[B_AXIS], line_lengths[C_AXIS], line_lengths[D_AXIS], cart[E_CART]);
- #else
- _set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_CART]);
- #endif
- #else
- _set_position_mm(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_CART]);
- #endif
- }
- /**
- * Setters for planner position (also setting stepper position).
- */
- void Planner::set_position_mm(const AxisEnum axis, const float &v) {
- #if ENABLED(DISTINCT_E_FACTORS)
- const uint8_t axis_index = axis + (axis == E_AXIS ? active_extruder : 0);
- last_extruder = active_extruder;
- #else
- const uint8_t axis_index = axis;
- #endif
- position[axis] = LROUND(axis_steps_per_mm[axis_index] * (v + (
- #if ENABLED(AUTO_BED_LEVELING_UBL)
- axis == Z_AXIS && leveling_active ? ubl.get_z_correction(current_position[X_AXIS], current_position[Y_AXIS]) :
- #endif
- 0)
- ));
- #if HAS_POSITION_FLOAT
- position_float[axis] = v;
- #endif
- if (has_blocks_queued())
- buffer_sync_block();
- else
- stepper.set_position(axis, position[axis]);
- }
- // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
- void Planner::reset_acceleration_rates() {
- #if ENABLED(DISTINCT_E_FACTORS)
- #define AXIS_CONDITION (i < E_AXIS || i == E_AXIS + active_extruder)
- #else
- #define AXIS_CONDITION true
- #endif
- uint32_t highest_rate = 1;
- LOOP_NUM_AXIS_N(i) {
- max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
- if (AXIS_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]);
- }
- cutoff_long = 4294967295UL / highest_rate; // 0xFFFFFFFFUL
- #if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
- recalculate_max_e_jerk();
- #endif
- }
- // Recalculate position, steps_to_mm if axis_steps_per_mm changes!
- void Planner::refresh_positioning() {
- LOOP_NUM_AXIS_N(i) steps_to_mm[i] = 1.0f / axis_steps_per_mm[i];
- set_position_mm_kinematic(current_position);
- reset_acceleration_rates();
- }
- #if ENABLED(AUTOTEMP)
- void Planner::autotemp_M104_M109() {
- if ((autotemp_enabled = parser.seen('F'))) autotemp_factor = parser.value_float();
- if (parser.seen('S')) autotemp_min = parser.value_celsius();
- if (parser.seen('B')) autotemp_max = parser.value_celsius();
- }
- #endif
|