1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
- /**
- * stepper.cpp - A singleton object to execute motion plans using stepper motors
- * Marlin Firmware
- *
- * Derived from Grbl
- * Copyright (c) 2009-2011 Simen Svale Skogsrud
- *
- * Grbl is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * Grbl is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
- */
- /**
- * Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith
- * and Philipp Tiefenbacher.
- */
- /**
- * __________________________
- * /| |\ _________________ ^
- * / | | \ /| |\ |
- * / | | \ / | | \ s
- * / | | | | | \ p
- * / | | | | | \ e
- * +-----+------------------------+---+--+---------------+----+ e
- * | BLOCK 1 | BLOCK 2 | d
- *
- * time ----->
- *
- * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
- * first block->accelerate_until step_events_completed, then keeps going at constant speed until
- * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
- * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
- */
- /**
- * Marlin uses the Bresenham algorithm. For a detailed explanation of theory and
- * method see https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
- */
- /**
- * Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle.
- * Equations based on Synthethos TinyG2 sources, but the fixed-point
- * implementation is new, as we are running the ISR with a variable period.
- * Also implemented the Bézier velocity curve evaluation in ARM assembler,
- * to avoid impacting ISR speed.
- */
- #include "Marlin.h"
- #include "stepper.h"
- #include "endstops.h"
- #include "planner.h"
- #include "temperature.h"
- #include "ultralcd.h"
- #include "language.h"
- #include "cardreader.h"
- #include "speed_lookuptable.h"
- #include "delay.h"
- #if HAS_DIGIPOTSS
- #include <SPI.h>
- #endif
- Stepper stepper; // Singleton
- // public:
- #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
- bool Stepper::homing_dual_axis = false;
- #endif
- #if HAS_MOTOR_CURRENT_PWM
- uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()
- #endif
- // private:
- block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
- uint8_t Stepper::last_direction_bits = 0,
- Stepper::axis_did_move;
- bool Stepper::abort_current_block;
- #if DISABLED(MIXING_EXTRUDER)
- uint8_t Stepper::last_moved_extruder = 0xFF;
- #endif
- #if ENABLED(X_DUAL_ENDSTOPS)
- bool Stepper::locked_X_motor = false, Stepper::locked_X2_motor = false;
- #endif
- #if ENABLED(Y_DUAL_ENDSTOPS)
- bool Stepper::locked_Y_motor = false, Stepper::locked_Y2_motor = false;
- #endif
- #if ENABLED(Z_DUAL_ENDSTOPS)
- bool Stepper::locked_Z_motor = false, Stepper::locked_Z2_motor = false;
- #endif
- uint32_t Stepper::acceleration_time, Stepper::deceleration_time;
- uint8_t Stepper::steps_per_isr;
- #if DISABLED(ADAPTIVE_STEP_SMOOTHING)
- constexpr
- #endif
- uint8_t Stepper::oversampling_factor;
- int32_t Stepper::delta_error[NUM_AXIS] = { 0 };
- uint32_t Stepper::advance_dividend[NUM_AXIS] = { 0 },
- Stepper::advance_divisor = 0,
- Stepper::step_events_completed = 0, // The number of step events executed in the current block
- Stepper::accelerate_until, // The point from where we need to stop acceleration
- Stepper::decelerate_after, // The point from where we need to start decelerating
- Stepper::step_event_count; // The total event count for the current block
- #if ENABLED(MIXING_EXTRUDER)
- int32_t Stepper::delta_error_m[MIXING_STEPPERS];
- uint32_t Stepper::advance_dividend_m[MIXING_STEPPERS],
- Stepper::advance_divisor_m;
- #else
- int8_t Stepper::active_extruder; // Active extruder
- #endif
- #if ENABLED(S_CURVE_ACCELERATION)
- int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler
- int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assembler
- int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembler
- uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembler
- uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler
- bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative
- bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not
- #endif
- uint32_t Stepper::nextMainISR = 0;
- #if ENABLED(LIN_ADVANCE)
- constexpr uint32_t LA_ADV_NEVER = 0xFFFFFFFF;
- uint32_t Stepper::nextAdvanceISR = LA_ADV_NEVER,
- Stepper::LA_isr_rate = LA_ADV_NEVER;
- uint16_t Stepper::LA_current_adv_steps = 0,
- Stepper::LA_final_adv_steps,
- Stepper::LA_max_adv_steps;
- int8_t Stepper::LA_steps = 0;
- bool Stepper::LA_use_advance_lead;
- #endif // LIN_ADVANCE
- int32_t Stepper::ticks_nominal = -1;
- #if DISABLED(S_CURVE_ACCELERATION)
- uint32_t Stepper::acc_step_rate; // needed for deceleration start point
- #endif
- volatile int32_t Stepper::endstops_trigsteps[XYZ],
- Stepper::count_position[NUM_AXIS] = { 0 };
- int8_t Stepper::count_direction[NUM_AXIS] = {
- 1, 1, 1, 1
- #if ENABLED(HANGPRINTER)
- , 1
- #endif
- };
- #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
- #define DUAL_ENDSTOP_APPLY_STEP(A,V) \
- if (homing_dual_axis) { \
- if (A##_HOME_DIR < 0) { \
- if (!(TEST(endstops.state(), A##_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
- if (!(TEST(endstops.state(), A##2_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
- } \
- else { \
- if (!(TEST(endstops.state(), A##_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \
- if (!(TEST(endstops.state(), A##2_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \
- } \
- } \
- else { \
- A##_STEP_WRITE(V); \
- A##2_STEP_WRITE(V); \
- }
- #endif
- #if ENABLED(X_DUAL_STEPPER_DRIVERS)
- #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
- #if ENABLED(X_DUAL_ENDSTOPS)
- #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
- #else
- #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
- #endif
- #elif ENABLED(DUAL_X_CARRIAGE)
- #define X_APPLY_DIR(v,ALWAYS) \
- if (extruder_duplication_enabled || ALWAYS) { \
- X_DIR_WRITE(v); \
- X2_DIR_WRITE(v); \
- } \
- else { \
- if (movement_extruder()) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
- }
- #define X_APPLY_STEP(v,ALWAYS) \
- if (extruder_duplication_enabled || ALWAYS) { \
- X_STEP_WRITE(v); \
- X2_STEP_WRITE(v); \
- } \
- else { \
- if (movement_extruder()) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
- }
- #else
- #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
- #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
- #endif
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
- #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
- #if ENABLED(Y_DUAL_ENDSTOPS)
- #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
- #else
- #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
- #endif
- #else
- #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
- #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
- #endif
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
- #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
- #if ENABLED(Z_DUAL_ENDSTOPS)
- #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
- #else
- #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
- #endif
- #else
- #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
- #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
- #endif
- /**
- * Hangprinter's mapping {A,B,C,D} <-> {X,Y,Z,E1} happens here.
- * If you have two extruders: {A,B,C,D} <-> {X,Y,Z,E2}
- * ... etc up to max 4 extruders.
- * Place D connector on your first "free" extruder output.
- */
- #if ENABLED(HANGPRINTER)
- #define A_APPLY_DIR(v,Q) X_APPLY_DIR(v,Q)
- #define A_APPLY_STEP(v,Q) X_APPLY_STEP(v,Q)
- #define B_APPLY_DIR(v,Q) Y_APPLY_DIR(v,Q)
- #define B_APPLY_STEP(v,Q) Y_APPLY_STEP(v,Q)
- #define C_APPLY_DIR(v,Q) Z_APPLY_DIR(v,Q)
- #define C_APPLY_STEP(v,Q) Z_APPLY_STEP(v,Q)
- #define __D_APPLY(I,T,v) E##I##_##T##_WRITE(v)
- #define _D_APPLY(I,T,v) __D_APPLY(I,T,v)
- #define D_APPLY_DIR(v,Q) _D_APPLY(EXTRUDERS, DIR, v)
- #define D_APPLY_STEP(v,Q) _D_APPLY(EXTRUDERS, STEP, v)
- #endif
- #if DISABLED(MIXING_EXTRUDER)
- #define E_APPLY_STEP(v,Q) E_STEP_WRITE(active_extruder, v)
- #endif
- // intRes = longIn1 * longIn2 >> 24
- // uses:
- // A[tmp] to store 0
- // B[tmp] to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
- // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
- // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
- // B A are bits 24-39 and are the returned value
- // C B A is longIn1
- // D C B A is longIn2
- //
- static FORCE_INLINE uint16_t MultiU24X32toH16(uint32_t longIn1, uint32_t longIn2) {
- register uint8_t tmp1;
- register uint8_t tmp2;
- register uint16_t intRes;
- __asm__ __volatile__(
- A("clr %[tmp1]")
- A("mul %A[longIn1], %B[longIn2]")
- A("mov %[tmp2], r1")
- A("mul %B[longIn1], %C[longIn2]")
- A("movw %A[intRes], r0")
- A("mul %C[longIn1], %C[longIn2]")
- A("add %B[intRes], r0")
- A("mul %C[longIn1], %B[longIn2]")
- A("add %A[intRes], r0")
- A("adc %B[intRes], r1")
- A("mul %A[longIn1], %C[longIn2]")
- A("add %[tmp2], r0")
- A("adc %A[intRes], r1")
- A("adc %B[intRes], %[tmp1]")
- A("mul %B[longIn1], %B[longIn2]")
- A("add %[tmp2], r0")
- A("adc %A[intRes], r1")
- A("adc %B[intRes], %[tmp1]")
- A("mul %C[longIn1], %A[longIn2]")
- A("add %[tmp2], r0")
- A("adc %A[intRes], r1")
- A("adc %B[intRes], %[tmp1]")
- A("mul %B[longIn1], %A[longIn2]")
- A("add %[tmp2], r1")
- A("adc %A[intRes], %[tmp1]")
- A("adc %B[intRes], %[tmp1]")
- A("lsr %[tmp2]")
- A("adc %A[intRes], %[tmp1]")
- A("adc %B[intRes], %[tmp1]")
- A("mul %D[longIn2], %A[longIn1]")
- A("add %A[intRes], r0")
- A("adc %B[intRes], r1")
- A("mul %D[longIn2], %B[longIn1]")
- A("add %B[intRes], r0")
- A("clr r1")
- : [intRes] "=&r" (intRes),
- [tmp1] "=&r" (tmp1),
- [tmp2] "=&r" (tmp2)
- : [longIn1] "d" (longIn1),
- [longIn2] "d" (longIn2)
- : "cc"
- );
- return intRes;
- }
- void Stepper::wake_up() {
- // TCNT1 = 0;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
- /**
- * Set the stepper direction of each axis
- *
- * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
- * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
- * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
- */
- void Stepper::set_directions() {
- #define SET_STEP_DIR(A) \
- if (motor_direction(_AXIS(A))) { \
- A##_APPLY_DIR(INVERT_## A##_DIR, false); \
- count_direction[_AXIS(A)] = -1; \
- } \
- else { \
- A##_APPLY_DIR(!INVERT_## A##_DIR, false); \
- count_direction[_AXIS(A)] = 1; \
- }
- #if HAS_X_DIR
- SET_STEP_DIR(X); // A
- #endif
- #if HAS_Y_DIR
- SET_STEP_DIR(Y); // B
- #endif
- #if HAS_Z_DIR
- SET_STEP_DIR(Z); // C
- #endif
- #if ENABLED(HANGPRINTER)
- SET_STEP_DIR(D);
- #endif
- #if DISABLED(LIN_ADVANCE)
- #if ENABLED(MIXING_EXTRUDER)
- if (motor_direction(E_AXIS)) {
- MIXING_STEPPERS_LOOP(j) REV_E_DIR(j);
- count_direction[E_AXIS] = -1;
- }
- else {
- MIXING_STEPPERS_LOOP(j) NORM_E_DIR(j);
- count_direction[E_AXIS] = 1;
- }
- #else
- if (motor_direction(E_AXIS)) {
- REV_E_DIR(active_extruder);
- count_direction[E_AXIS] = -1;
- }
- else {
- NORM_E_DIR(active_extruder);
- count_direction[E_AXIS] = 1;
- }
- #endif
- #endif // !LIN_ADVANCE
- // A small delay may be needed after changing direction
- #if MINIMUM_STEPPER_DIR_DELAY > 0
- DELAY_NS(MINIMUM_STEPPER_DIR_DELAY);
- #endif
- }
- #if ENABLED(S_CURVE_ACCELERATION)
- /**
- * This uses a quintic (fifth-degree) Bézier polynomial for the velocity curve, giving
- * a "linear pop" velocity curve; with pop being the sixth derivative of position:
- * velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th
- *
- * The Bézier curve takes the form:
- *
- * V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)
- *
- * Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)
- * through B_5(t) are the Bernstein basis as follows:
- *
- * B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1
- * B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t
- * B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2
- * B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3
- * B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4
- * B_5(t) = t^5 = t^5
- * ^ ^ ^ ^ ^ ^
- * | | | | | |
- * A B C D E F
- *
- * Unfortunately, we cannot use forward-differencing to calculate each position through
- * the curve, as Marlin uses variable timer periods. So, we require a formula of the form:
- *
- * V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F
- *
- * Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5
- * through t of the Bézier form of V(t), we can determine that:
- *
- * A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5
- * B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4
- * C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3
- * D = 10*P_0 - 20*P_1 + 10*P_2
- * E = - 5*P_0 + 5*P_1
- * F = P_0
- *
- * Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,
- * We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),
- * which, after simplification, resolves to:
- *
- * A = - 6*P_i + 6*P_t = 6*(P_t - P_i)
- * B = 15*P_i - 15*P_t = 15*(P_i - P_t)
- * C = -10*P_i + 10*P_t = 10*(P_t - P_i)
- * D = 0
- * E = 0
- * F = P_i
- *
- * As the t is evaluated in non uniform steps here, there is no other way rather than evaluating
- * the Bézier curve at each point:
- *
- * V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1]
- *
- * Floating point arithmetic execution time cost is prohibitive, so we will transform the math to
- * use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps
- * per second (driver pulses should at least be 2µS hi/2µS lo), and allocating 2 bits to avoid
- * overflows on the evaluation of the Bézier curve, means we can use
- *
- * t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned
- * A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign
- * B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign
- * C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign
- * F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign
- *
- * The trapezoid generator state contains the following information, that we will use to create and evaluate
- * the Bézier curve:
- *
- * blk->step_event_count [TS] = The total count of steps for this movement. (=distance)
- * blk->initial_rate [VI] = The initial steps per second (=velocity)
- * blk->final_rate [VF] = The ending steps per second (=velocity)
- * and the count of events completed (step_events_completed) [CS] (=distance until now)
- *
- * Note the abbreviations we use in the following formulae are between []s
- *
- * For Any 32bit CPU:
- *
- * At the start of each trapezoid, calculate the coefficients A,B,C,F and Advance [AV], as follows:
- *
- * A = 6*128*(VF - VI) = 768*(VF - VI)
- * B = 15*128*(VI - VF) = 1920*(VI - VF)
- * C = 10*128*(VF - VI) = 1280*(VF - VI)
- * F = 128*VI = 128*VI
- * AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)
- *
- * And for each point, evaluate the curve with the following sequence:
- *
- * void lsrs(uint32_t& d, uint32_t s, int cnt) {
- * d = s >> cnt;
- * }
- * void lsls(uint32_t& d, uint32_t s, int cnt) {
- * d = s << cnt;
- * }
- * void lsrs(int32_t& d, uint32_t s, int cnt) {
- * d = uint32_t(s) >> cnt;
- * }
- * void lsls(int32_t& d, uint32_t s, int cnt) {
- * d = uint32_t(s) << cnt;
- * }
- * void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {
- * uint64_t res = uint64_t(op1) * op2;
- * rlo = uint32_t(res & 0xFFFFFFFF);
- * rhi = uint32_t((res >> 32) & 0xFFFFFFFF);
- * }
- * void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {
- * int64_t mul = int64_t(op1) * op2;
- * int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));
- * mul += s;
- * rlo = int32_t(mul & 0xFFFFFFFF);
- * rhi = int32_t((mul >> 32) & 0xFFFFFFFF);
- * }
- * int32_t _eval_bezier_curve_arm(uint32_t curr_step) {
- * register uint32_t flo = 0;
- * register uint32_t fhi = bezier_AV * curr_step;
- * register uint32_t t = fhi;
- * register int32_t alo = bezier_F;
- * register int32_t ahi = 0;
- * register int32_t A = bezier_A;
- * register int32_t B = bezier_B;
- * register int32_t C = bezier_C;
- *
- * lsrs(ahi, alo, 1); // a = F << 31
- * lsls(alo, alo, 31); //
- * umull(flo, fhi, fhi, t); // f *= t
- * umull(flo, fhi, fhi, t); // f>>=32; f*=t
- * lsrs(flo, fhi, 1); //
- * smlal(alo, ahi, flo, C); // a+=(f>>33)*C
- * umull(flo, fhi, fhi, t); // f>>=32; f*=t
- * lsrs(flo, fhi, 1); //
- * smlal(alo, ahi, flo, B); // a+=(f>>33)*B
- * umull(flo, fhi, fhi, t); // f>>=32; f*=t
- * lsrs(flo, fhi, 1); // f>>=33;
- * smlal(alo, ahi, flo, A); // a+=(f>>33)*A;
- * lsrs(alo, ahi, 6); // a>>=38
- *
- * return alo;
- * }
- *
- * This is rewritten in ARM assembly for optimal performance (43 cycles to execute).
- *
- * For AVR, the precision of coefficients is scaled so the Bézier curve can be evaluated in real-time:
- * Let's reduce precision as much as possible. After some experimentation we found that:
- *
- * Assume t and AV with 24 bits is enough
- * A = 6*(VF - VI)
- * B = 15*(VI - VF)
- * C = 10*(VF - VI)
- * F = VI
- * AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR)
- *
- * Instead of storing sign for each coefficient, we will store its absolute value,
- * and flag the sign of the A coefficient, so we can save to store the sign bit.
- * It always holds that sign(A) = - sign(B) = sign(C)
- *
- * So, the resulting range of the coefficients are:
- *
- * t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned
- * A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits
- * B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits
- * C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits
- * F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits
- *
- * And for each curve, estimate its coefficients with:
- *
- * void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {
- * // Calculate the Bézier coefficients
- * if (v1 < v0) {
- * A_negative = true;
- * bezier_A = 6 * (v0 - v1);
- * bezier_B = 15 * (v0 - v1);
- * bezier_C = 10 * (v0 - v1);
- * }
- * else {
- * A_negative = false;
- * bezier_A = 6 * (v1 - v0);
- * bezier_B = 15 * (v1 - v0);
- * bezier_C = 10 * (v1 - v0);
- * }
- * bezier_F = v0;
- * }
- *
- * And for each point, evaluate the curve with the following sequence:
- *
- * // unsigned multiplication of 24 bits x 24bits, return upper 16 bits
- * void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {
- * r = (uint64_t(op1) * op2) >> 8;
- * }
- * // unsigned multiplication of 16 bits x 16bits, return upper 16 bits
- * void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {
- * r = (uint32_t(op1) * op2) >> 16;
- * }
- * // unsigned multiplication of 16 bits x 24bits, return upper 24 bits
- * void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {
- * r = uint24_t((uint64_t(op1) * op2) >> 16);
- * }
- *
- * int32_t _eval_bezier_curve(uint32_t curr_step) {
- * // To save computing, the first step is always the initial speed
- * if (!curr_step)
- * return bezier_F;
- *
- * uint16_t t;
- * umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits
- * uint16_t f = t;
- * umul16x16to16hi(f, f, t); // Range 16 bits (unsigned)
- * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned)
- * uint24_t acc = bezier_F; // Range 20 bits (unsigned)
- * if (A_negative) {
- * uint24_t v;
- * umul16x24to24hi(v, f, bezier_C); // Range 21bits
- * acc -= v;
- * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
- * umul16x24to24hi(v, f, bezier_B); // Range 22bits
- * acc += v;
- * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
- * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
- * acc -= v;
- * }
- * else {
- * uint24_t v;
- * umul16x24to24hi(v, f, bezier_C); // Range 21bits
- * acc += v;
- * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
- * umul16x24to24hi(v, f, bezier_B); // Range 22bits
- * acc -= v;
- * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
- * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
- * acc += v;
- * }
- * return acc;
- * }
- * These functions are translated to assembler for optimal performance.
- * Coefficient calculation takes 70 cycles. Bezier point evaluation takes 150 cycles.
- */
- // For AVR we use assembly to maximize speed
- void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
- // Store advance
- bezier_AV = av;
- // Calculate the rest of the coefficients
- register uint8_t r2 = v0 & 0xFF;
- register uint8_t r3 = (v0 >> 8) & 0xFF;
- register uint8_t r12 = (v0 >> 16) & 0xFF;
- register uint8_t r5 = v1 & 0xFF;
- register uint8_t r6 = (v1 >> 8) & 0xFF;
- register uint8_t r7 = (v1 >> 16) & 0xFF;
- register uint8_t r4,r8,r9,r10,r11;
- __asm__ __volatile__(
- /* Calculate the Bézier coefficients */
- /* %10:%1:%0 = v0*/
- /* %5:%4:%3 = v1*/
- /* %7:%6:%10 = temporary*/
- /* %9 = val (must be high register!)*/
- /* %10 (must be high register!)*/
- /* Store initial velocity*/
- A("sts bezier_F, %0")
- A("sts bezier_F+1, %1")
- A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 */
- /* Get delta speed */
- A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */
- A("clr %8") /* %8 = 0 */
- A("sub %0,%3")
- A("sbc %1,%4")
- A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */
- A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 */
- /* Result was negative, get the absolute value*/
- A("com %10")
- A("com %1")
- A("neg %0")
- A("sbc %1,%2")
- A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */
- A("clr %2") /* %2 = 0, means A_negative = false */
- /* Store negative flag*/
- L("1")
- A("sts A_negative, %2") /* Store negative flag */
- /* Compute coefficients A,B and C [20 cycles worst case]*/
- A("ldi %9,6") /* %9 = 6 */
- A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */
- A("sts bezier_A, r0")
- A("mov %6,r1")
- A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */
- A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */
- A("add %6,r0")
- A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */
- A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */
- A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */
- A("sts bezier_A+1, %6")
- A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */
- A("ldi %9,15") /* %9 = 15 */
- A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */
- A("sts bezier_B, r0")
- A("mov %6,r1")
- A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */
- A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */
- A("add %6,r0")
- A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */
- A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */
- A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */
- A("sts bezier_B+1, %6")
- A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */
- A("ldi %9,10") /* %9 = 10 */
- A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */
- A("sts bezier_C, r0")
- A("mov %6,r1")
- A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */
- A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */
- A("add %6,r0")
- A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */
- A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */
- A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */
- A("sts bezier_C+1, %6")
- " sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */
- : "+r" (r2),
- "+d" (r3),
- "=r" (r4),
- "+r" (r5),
- "+r" (r6),
- "+r" (r7),
- "=r" (r8),
- "=r" (r9),
- "=r" (r10),
- "=d" (r11),
- "+r" (r12)
- :
- : "r0", "r1", "cc", "memory"
- );
- }
- FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
- // If dealing with the first step, save expensive computing and return the initial speed
- if (!curr_step)
- return bezier_F;
- register uint8_t r0 = 0; /* Zero register */
- register uint8_t r2 = (curr_step) & 0xFF;
- register uint8_t r3 = (curr_step >> 8) & 0xFF;
- register uint8_t r4 = (curr_step >> 16) & 0xFF;
- register uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */
- __asm__ __volatile(
- /* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/
- A("lds %9,bezier_AV") /* %9 = LO(AV)*/
- A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/
- A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/
- A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/
- A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/
- A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/
- A("add %7,r0")
- A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/
- A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/
- A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/
- A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/
- A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/
- A("add %7,r0")
- A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/
- A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/
- A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/
- A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/
- A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/
- /* %8:%7 = t*/
- /* uint16_t f = t;*/
- A("mov %5,%7") /* %6:%5 = f*/
- A("mov %6,%8")
- /* %6:%5 = f*/
- /* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */
- A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
- A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/
- A("clr %10") /* %10 = 0*/
- A("clr %11") /* %11 = 0*/
- A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
- A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/
- A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
- A("adc %11,%0") /* %11 += carry*/
- A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
- A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/
- A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */
- A("adc %11,%0") /* %11 += carry*/
- A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
- A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
- A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
- A("mov %5,%10") /* %6:%5 = */
- A("mov %6,%11") /* f = %10:%11*/
- /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
- A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
- A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
- A("clr %10") /* %10 = 0*/
- A("clr %11") /* %11 = 0*/
- A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
- A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
- A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
- A("adc %11,%0") /* %11 += carry*/
- A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
- A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
- A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
- A("adc %11,%0") /* %11 += carry*/
- A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
- A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
- A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
- A("mov %5,%10") /* %6:%5 =*/
- A("mov %6,%11") /* f = %10:%11*/
- /* [15 +17*2] = [49]*/
- /* %4:%3:%2 will be acc from now on*/
- /* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/
- A("clr %9") /* "decimal place we get for free"*/
- A("lds %2,bezier_F")
- A("lds %3,bezier_F+1")
- A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*/
- /* if (A_negative) {*/
- A("lds r0,A_negative")
- A("or r0,%0") /* Is flag signalling negative? */
- A("brne 3f") /* If yes, Skip next instruction if A was negative*/
- A("rjmp 1f") /* Otherwise, jump */
- /* uint24_t v; */
- /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */
- /* acc -= v; */
- L("3")
- A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
- A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
- A("sub %9,r1")
- A("sbc %2,%0")
- A("sbc %3,%0")
- A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/
- A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
- A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
- A("sub %9,r0")
- A("sbc %2,r1")
- A("sbc %3,%0")
- A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/
- A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
- A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
- A("sub %2,r0")
- A("sbc %3,r1")
- A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/
- A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
- A("sub %9,r0")
- A("sbc %2,r1")
- A("sbc %3,%0")
- A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/
- A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
- A("sub %2,r0")
- A("sbc %3,r1")
- A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/
- A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
- A("sub %3,r0")
- A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/
- /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
- A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
- A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
- A("clr %10") /* %10 = 0*/
- A("clr %11") /* %11 = 0*/
- A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
- A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
- A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
- A("adc %11,%0") /* %11 += carry*/
- A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
- A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
- A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
- A("adc %11,%0") /* %11 += carry*/
- A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
- A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
- A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
- A("mov %5,%10") /* %6:%5 =*/
- A("mov %6,%11") /* f = %10:%11*/
- /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
- /* acc += v; */
- A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
- A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
- A("add %9,r1")
- A("adc %2,%0")
- A("adc %3,%0")
- A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/
- A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
- A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
- A("add %9,r0")
- A("adc %2,r1")
- A("adc %3,%0")
- A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/
- A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
- A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
- A("add %2,r0")
- A("adc %3,r1")
- A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/
- A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
- A("add %9,r0")
- A("adc %2,r1")
- A("adc %3,%0")
- A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/
- A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
- A("add %2,r0")
- A("adc %3,r1")
- A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/
- A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
- A("add %3,r0")
- A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/
- /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
- A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
- A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
- A("clr %10") /* %10 = 0*/
- A("clr %11") /* %11 = 0*/
- A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
- A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
- A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
- A("adc %11,%0") /* %11 += carry*/
- A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
- A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
- A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
- A("adc %11,%0") /* %11 += carry*/
- A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
- A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
- A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
- A("mov %5,%10") /* %6:%5 =*/
- A("mov %6,%11") /* f = %10:%11*/
- /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
- /* acc -= v; */
- A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
- A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
- A("sub %9,r1")
- A("sbc %2,%0")
- A("sbc %3,%0")
- A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/
- A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
- A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
- A("sub %9,r0")
- A("sbc %2,r1")
- A("sbc %3,%0")
- A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/
- A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
- A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
- A("sub %2,r0")
- A("sbc %3,r1")
- A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/
- A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
- A("sub %9,r0")
- A("sbc %2,r1")
- A("sbc %3,%0")
- A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/
- A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
- A("sub %2,r0")
- A("sbc %3,r1")
- A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/
- A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
- A("sub %3,r0")
- A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/
- A("jmp 2f") /* Done!*/
- L("1")
- /* uint24_t v; */
- /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/
- /* acc += v; */
- A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
- A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
- A("add %9,r1")
- A("adc %2,%0")
- A("adc %3,%0")
- A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/
- A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
- A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
- A("add %9,r0")
- A("adc %2,r1")
- A("adc %3,%0")
- A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/
- A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
- A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
- A("add %2,r0")
- A("adc %3,r1")
- A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/
- A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
- A("add %9,r0")
- A("adc %2,r1")
- A("adc %3,%0")
- A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/
- A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
- A("add %2,r0")
- A("adc %3,r1")
- A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/
- A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
- A("add %3,r0")
- A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/
- /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
- A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
- A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
- A("clr %10") /* %10 = 0*/
- A("clr %11") /* %11 = 0*/
- A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
- A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
- A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
- A("adc %11,%0") /* %11 += carry*/
- A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
- A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
- A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
- A("adc %11,%0") /* %11 += carry*/
- A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
- A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
- A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
- A("mov %5,%10") /* %6:%5 =*/
- A("mov %6,%11") /* f = %10:%11*/
- /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
- /* acc -= v;*/
- A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
- A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
- A("sub %9,r1")
- A("sbc %2,%0")
- A("sbc %3,%0")
- A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/
- A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
- A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
- A("sub %9,r0")
- A("sbc %2,r1")
- A("sbc %3,%0")
- A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/
- A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
- A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
- A("sub %2,r0")
- A("sbc %3,r1")
- A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/
- A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
- A("sub %9,r0")
- A("sbc %2,r1")
- A("sbc %3,%0")
- A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/
- A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
- A("sub %2,r0")
- A("sbc %3,r1")
- A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/
- A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
- A("sub %3,r0")
- A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/
- /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
- A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
- A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
- A("clr %10") /* %10 = 0*/
- A("clr %11") /* %11 = 0*/
- A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
- A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
- A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
- A("adc %11,%0") /* %11 += carry*/
- A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
- A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
- A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
- A("adc %11,%0") /* %11 += carry*/
- A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
- A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
- A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
- A("mov %5,%10") /* %6:%5 =*/
- A("mov %6,%11") /* f = %10:%11*/
- /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
- /* acc += v; */
- A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
- A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
- A("add %9,r1")
- A("adc %2,%0")
- A("adc %3,%0")
- A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/
- A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
- A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
- A("add %9,r0")
- A("adc %2,r1")
- A("adc %3,%0")
- A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/
- A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
- A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
- A("add %2,r0")
- A("adc %3,r1")
- A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/
- A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
- A("add %9,r0")
- A("adc %2,r1")
- A("adc %3,%0")
- A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/
- A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
- A("add %2,r0")
- A("adc %3,r1")
- A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/
- A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
- A("add %3,r0")
- A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/
- L("2")
- " clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */
- : "+r"(r0),
- "+r"(r1),
- "+r"(r2),
- "+r"(r3),
- "+r"(r4),
- "+r"(r5),
- "+r"(r6),
- "+r"(r7),
- "+r"(r8),
- "+r"(r9),
- "+r"(r10),
- "+r"(r11)
- :
- :"cc","r0","r1"
- );
- return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);
- }
- #endif // S_CURVE_ACCELERATION
- /**
- * Stepper Driver Interrupt
- *
- * Directly pulses the stepper motors at high frequency.
- */
- HAL_STEP_TIMER_ISR {
- HAL_timer_isr_prologue(STEP_TIMER_NUM);
- Stepper::isr();
- HAL_timer_isr_epilogue(STEP_TIMER_NUM);
- }
- #define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B)
- void Stepper::isr() {
- DISABLE_ISRS();
- // Program timer compare for the maximum period, so it does NOT
- // flag an interrupt while this ISR is running - So changes from small
- // periods to big periods are respected and the timer does not reset to 0
- HAL_timer_set_compare(STEP_TIMER_NUM, HAL_TIMER_TYPE_MAX);
- // Count of ticks for the next ISR
- hal_timer_t next_isr_ticks = 0;
- // Limit the amount of iterations
- uint8_t max_loops = 10;
- // We need this variable here to be able to use it in the following loop
- hal_timer_t min_ticks;
- do {
- // Enable ISRs to reduce USART processing latency
- ENABLE_ISRS();
- // Run main stepping pulse phase ISR if we have to
- if (!nextMainISR) Stepper::stepper_pulse_phase_isr();
- #if ENABLED(LIN_ADVANCE)
- // Run linear advance stepper ISR if we have to
- if (!nextAdvanceISR) nextAdvanceISR = Stepper::advance_isr();
- #endif
- // ^== Time critical. NOTHING besides pulse generation should be above here!!!
- // Run main stepping block processing ISR if we have to
- if (!nextMainISR) nextMainISR = Stepper::stepper_block_phase_isr();
- uint32_t interval =
- #if ENABLED(LIN_ADVANCE)
- MIN(nextAdvanceISR, nextMainISR) // Nearest time interval
- #else
- nextMainISR // Remaining stepper ISR time
- #endif
- ;
- // Limit the value to the maximum possible value of the timer
- NOMORE(interval, HAL_TIMER_TYPE_MAX);
- // Compute the time remaining for the main isr
- nextMainISR -= interval;
- #if ENABLED(LIN_ADVANCE)
- // Compute the time remaining for the advance isr
- if (nextAdvanceISR != LA_ADV_NEVER) nextAdvanceISR -= interval;
- #endif
- /**
- * This needs to avoid a race-condition caused by interleaving
- * of interrupts required by both the LA and Stepper algorithms.
- *
- * Assume the following tick times for stepper pulses:
- * Stepper ISR (S): 1 1000 2000 3000 4000
- * Linear Adv. (E): 10 1010 2010 3010 4010
- *
- * The current algorithm tries to interleave them, giving:
- * 1:S 10:E 1000:S 1010:E 2000:S 2010:E 3000:S 3010:E 4000:S 4010:E
- *
- * Ideal timing would yield these delta periods:
- * 1:S 9:E 990:S 10:E 990:S 10:E 990:S 10:E 990:S 10:E
- *
- * But, since each event must fire an ISR with a minimum duration, the
- * minimum delta might be 900, so deltas under 900 get rounded up:
- * 900:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E
- *
- * It works, but divides the speed of all motors by half, leading to a sudden
- * reduction to 1/2 speed! Such jumps in speed lead to lost steps (not even
- * accounting for double/quad stepping, which makes it even worse).
- */
- // Compute the tick count for the next ISR
- next_isr_ticks += interval;
- /**
- * The following section must be done with global interrupts disabled.
- * We want nothing to interrupt it, as that could mess the calculations
- * we do for the next value to program in the period register of the
- * stepper timer and lead to skipped ISRs (if the value we happen to program
- * is less than the current count due to something preempting between the
- * read and the write of the new period value).
- */
- DISABLE_ISRS();
- /**
- * Get the current tick value + margin
- * Assuming at least 6µs between calls to this ISR...
- * On AVR the ISR epilogue+prologue is estimated at 100 instructions - Give 8µs as margin
- * On ARM the ISR epilogue+prologue is estimated at 20 instructions - Give 1µs as margin
- */
- min_ticks = HAL_timer_get_count(STEP_TIMER_NUM) + hal_timer_t((STEPPER_TIMER_TICKS_PER_US) * 8);
- /**
- * NB: If for some reason the stepper monopolizes the MPU, eventually the
- * timer will wrap around (and so will 'next_isr_ticks'). So, limit the
- * loop to 10 iterations. Beyond that, there's no way to ensure correct pulse
- * timing, since the MCU isn't fast enough.
- */
- if (!--max_loops) next_isr_ticks = min_ticks;
- // Advance pulses if not enough time to wait for the next ISR
- } while (next_isr_ticks < min_ticks);
- // Now 'next_isr_ticks' contains the period to the next Stepper ISR - And we are
- // sure that the time has not arrived yet - Warrantied by the scheduler
- // Set the next ISR to fire at the proper time
- HAL_timer_set_compare(STEP_TIMER_NUM, hal_timer_t(next_isr_ticks));
- // Don't forget to finally reenable interrupts
- ENABLE_ISRS();
- }
- /**
- * This phase of the ISR should ONLY create the pulses for the steppers.
- * This prevents jitter caused by the interval between the start of the
- * interrupt and the start of the pulses. DON'T add any logic ahead of the
- * call to this method that might cause variation in the timing. The aim
- * is to keep pulse timing as regular as possible.
- */
- #if ENABLED(UNREGISTERED_MOVE_SUPPORT)
- #define COUNT_IT current_block->count_it
- #else
- #define COUNT_IT true
- #endif
- void Stepper::stepper_pulse_phase_isr() {
- // If we must abort the current block, do so!
- if (abort_current_block) {
- abort_current_block = false;
- if (current_block) {
- axis_did_move = 0;
- current_block = NULL;
- planner.discard_current_block();
- }
- }
- // If there is no current block, do nothing
- if (!current_block) return;
- // Count of pending loops and events for this iteration
- const uint32_t pending_events = step_event_count - step_events_completed;
- uint8_t events_to_do = MIN(pending_events, steps_per_isr);
- // Just update the value we will get at the end of the loop
- step_events_completed += events_to_do;
- // Get the timer count and estimate the end of the pulse
- hal_timer_t pulse_end = HAL_timer_get_count(PULSE_TIMER_NUM) + hal_timer_t(MIN_PULSE_TICKS);
- const hal_timer_t added_step_ticks = hal_timer_t(ADDED_STEP_TICKS);
- // Take multiple steps per interrupt (For high speed moves)
- do {
- #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
- #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
- // Start an active pulse, if Bresenham says so, and update position
- #define PULSE_START(AXIS) do{ \
- delta_error[_AXIS(AXIS)] += advance_dividend[_AXIS(AXIS)]; \
- if (delta_error[_AXIS(AXIS)] >= 0) { \
- _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), 0); \
- if (COUNT_IT) count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
- } \
- }while(0)
- // Stop an active pulse, if any, and adjust error term
- #define PULSE_STOP(AXIS) do { \
- if (delta_error[_AXIS(AXIS)] >= 0) { \
- delta_error[_AXIS(AXIS)] -= advance_divisor; \
- _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), 0); \
- } \
- }while(0)
- // Pulse start
- #if ENABLED(HANGPRINTER)
- #if HAS_A_STEP
- PULSE_START(A);
- #endif
- #if HAS_B_STEP
- PULSE_START(B);
- #endif
- #if HAS_C_STEP
- PULSE_START(C);
- #endif
- #if HAS_D_STEP
- PULSE_START(D);
- #endif
- #else
- #if HAS_X_STEP
- PULSE_START(X);
- #endif
- #if HAS_Y_STEP
- PULSE_START(Y);
- #endif
- #if HAS_Z_STEP
- PULSE_START(Z);
- #endif
- #endif // HANGPRINTER
- // Pulse E/Mixing extruders
- #if ENABLED(LIN_ADVANCE)
- // Tick the E axis, correct error term and update position
- delta_error[E_AXIS] += advance_dividend[E_AXIS];
- if (delta_error[E_AXIS] >= 0) {
- if (COUNT_IT) count_position[E_AXIS] += count_direction[E_AXIS];
- delta_error[E_AXIS] -= advance_divisor;
- // Don't step E here - But remember the number of steps to perform
- motor_direction(E_AXIS) ? --LA_steps : ++LA_steps;
- }
- #else // !LIN_ADVANCE - use linear interpolation for E also
- #if ENABLED(MIXING_EXTRUDER)
- // Tick the E axis
- delta_error[E_AXIS] += advance_dividend[E_AXIS];
- if (delta_error[E_AXIS] >= 0) {
- if (COUNT_IT) count_position[E_AXIS] += count_direction[E_AXIS];
- delta_error[E_AXIS] -= advance_divisor;
- }
- // Tick the counters used for this mix in proper proportion
- MIXING_STEPPERS_LOOP(j) {
- // Step mixing steppers (proportionally)
- delta_error_m[j] += advance_dividend_m[j];
- // Step when the counter goes over zero
- if (delta_error_m[j] >= 0) E_STEP_WRITE(j, !INVERT_E_STEP_PIN);
- }
- #else // !MIXING_EXTRUDER
- PULSE_START(E);
- #endif
- #endif // !LIN_ADVANCE
- #if MINIMUM_STEPPER_PULSE
- // Just wait for the requested pulse duration
- while (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ }
- #endif
- // Add the delay needed to ensure the maximum driver rate is enforced
- if (signed(added_step_ticks) > 0) pulse_end += hal_timer_t(added_step_ticks);
- #if ENABLED(HANGPRINTER)
- #if HAS_A_STEP
- PULSE_STOP(A);
- #endif
- #if HAS_B_STEP
- PULSE_STOP(B);
- #endif
- #if HAS_C_STEP
- PULSE_STOP(C);
- #endif
- #if HAS_D_STEP
- PULSE_STOP(D);
- #endif
- #else
- #if HAS_X_STEP
- PULSE_STOP(X);
- #endif
- #if HAS_Y_STEP
- PULSE_STOP(Y);
- #endif
- #if HAS_Z_STEP
- PULSE_STOP(Z);
- #endif
- #endif
- #if DISABLED(LIN_ADVANCE)
- #if ENABLED(MIXING_EXTRUDER)
- MIXING_STEPPERS_LOOP(j) {
- if (delta_error_m[j] >= 0) {
- delta_error_m[j] -= advance_divisor_m;
- E_STEP_WRITE(j, INVERT_E_STEP_PIN);
- }
- }
- #else // !MIXING_EXTRUDER
- PULSE_STOP(E);
- #endif
- #endif // !LIN_ADVANCE
- // Decrement the count of pending pulses to do
- --events_to_do;
- // For minimum pulse time wait after stopping pulses also
- if (events_to_do) {
- // Just wait for the requested pulse duration
- while (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ }
- #if MINIMUM_STEPPER_PULSE
- // Add to the value, the time that the pulse must be active (to be used on the next loop)
- pulse_end += hal_timer_t(MIN_PULSE_TICKS);
- #endif
- }
- } while (events_to_do);
- }
- // This is the last half of the stepper interrupt: This one processes and
- // properly schedules blocks from the planner. This is executed after creating
- // the step pulses, so it is not time critical, as pulses are already done.
- uint32_t Stepper::stepper_block_phase_isr() {
- // If no queued movements, just wait 1ms for the next move
- uint32_t interval = (STEPPER_TIMER_RATE / 1000);
- // If there is a current block
- if (current_block) {
- // If current block is finished, reset pointer
- if (step_events_completed >= step_event_count) {
- axis_did_move = 0;
- current_block = NULL;
- planner.discard_current_block();
- }
- else {
- // Step events not completed yet...
- // Are we in acceleration phase ?
- if (step_events_completed <= accelerate_until) { // Calculate new timer value
- #if ENABLED(S_CURVE_ACCELERATION)
- // Get the next speed to use (Jerk limited!)
- uint32_t acc_step_rate =
- acceleration_time < current_block->acceleration_time
- ? _eval_bezier_curve(acceleration_time)
- : current_block->cruise_rate;
- #else
- acc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate;
- NOMORE(acc_step_rate, current_block->nominal_rate);
- #endif
- // acc_step_rate is in steps/second
- // step_rate to timer interval and steps per stepper isr
- interval = calc_timer_interval(acc_step_rate, oversampling_factor, &steps_per_isr);
- acceleration_time += interval;
- #if ENABLED(LIN_ADVANCE)
- if (LA_use_advance_lead) {
- // Fire ISR if final adv_rate is reached
- if (LA_steps && LA_isr_rate != current_block->advance_speed) nextAdvanceISR = 0;
- }
- else if (LA_steps) nextAdvanceISR = 0;
- #endif // LIN_ADVANCE
- }
- // Are we in Deceleration phase ?
- else if (step_events_completed > decelerate_after) {
- uint32_t step_rate;
- #if ENABLED(S_CURVE_ACCELERATION)
- // If this is the 1st time we process the 2nd half of the trapezoid...
- if (!bezier_2nd_half) {
- // Initialize the Bézier speed curve
- _calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);
- bezier_2nd_half = true;
- // The first point starts at cruise rate. Just save evaluation of the Bézier curve
- step_rate = current_block->cruise_rate;
- }
- else {
- // Calculate the next speed to use
- step_rate = deceleration_time < current_block->deceleration_time
- ? _eval_bezier_curve(deceleration_time)
- : current_block->final_rate;
- }
- #else
- // Using the old trapezoidal control
- step_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate);
- if (step_rate < acc_step_rate) { // Still decelerating?
- step_rate = acc_step_rate - step_rate;
- NOLESS(step_rate, current_block->final_rate);
- }
- else
- step_rate = current_block->final_rate;
- #endif
- // step_rate is in steps/second
- // step_rate to timer interval and steps per stepper isr
- interval = calc_timer_interval(step_rate, oversampling_factor, &steps_per_isr);
- deceleration_time += interval;
- #if ENABLED(LIN_ADVANCE)
- if (LA_use_advance_lead) {
- // Wake up eISR on first deceleration loop and fire ISR if final adv_rate is reached
- if (step_events_completed <= decelerate_after + steps_per_isr || (LA_steps && LA_isr_rate != current_block->advance_speed)) {
- nextAdvanceISR = 0;
- LA_isr_rate = current_block->advance_speed;
- }
- }
- else if (LA_steps) nextAdvanceISR = 0;
- #endif // LIN_ADVANCE
- }
- // We must be in cruise phase otherwise
- else {
- #if ENABLED(LIN_ADVANCE)
- // If there are any esteps, fire the next advance_isr "now"
- if (LA_steps && LA_isr_rate != current_block->advance_speed) nextAdvanceISR = 0;
- #endif
- // Calculate the ticks_nominal for this nominal speed, if not done yet
- if (ticks_nominal < 0) {
- // step_rate to timer interval and loops for the nominal speed
- ticks_nominal = calc_timer_interval(current_block->nominal_rate, oversampling_factor, &steps_per_isr);
- }
- // The timer interval is just the nominal value for the nominal speed
- interval = ticks_nominal;
- }
- }
- }
- // If there is no current block at this point, attempt to pop one from the buffer
- // and prepare its movement
- if (!current_block) {
- // Anything in the buffer?
- if ((current_block = planner.get_current_block())) {
- // Sync block? Sync the stepper counts and return
- while (TEST(current_block->flag, BLOCK_BIT_SYNC_POSITION)) {
- _set_position(
- current_block->position[A_AXIS], current_block->position[B_AXIS], current_block->position[C_AXIS],
- #if ENABLED(HANGPRINTER)
- current_block->position[D_AXIS],
- #endif
- current_block->position[E_AXIS]
- );
- planner.discard_current_block();
- // Try to get a new block
- if (!(current_block = planner.get_current_block()))
- return interval; // No more queued movements!
- }
- // Flag all moving axes for proper endstop handling
- #if IS_CORE
- // Define conditions for checking endstops
- #define S_(N) current_block->steps[CORE_AXIS_##N]
- #define D_(N) TEST(current_block->direction_bits, CORE_AXIS_##N)
- #endif
- #if CORE_IS_XY || CORE_IS_XZ
- /**
- * Head direction in -X axis for CoreXY and CoreXZ bots.
- *
- * If steps differ, both axes are moving.
- * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below)
- * If DeltaA == DeltaB, the movement is only in the 1st axis (X)
- */
- #if ENABLED(COREXY) || ENABLED(COREXZ)
- #define X_CMP ==
- #else
- #define X_CMP !=
- #endif
- #define X_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) X_CMP D_(2)) )
- #else
- #define X_MOVE_TEST !!current_block->steps[A_AXIS]
- #endif
- #if CORE_IS_XY || CORE_IS_YZ
- /**
- * Head direction in -Y axis for CoreXY / CoreYZ bots.
- *
- * If steps differ, both axes are moving
- * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y)
- * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z)
- */
- #if ENABLED(COREYX) || ENABLED(COREYZ)
- #define Y_CMP ==
- #else
- #define Y_CMP !=
- #endif
- #define Y_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) Y_CMP D_(2)) )
- #else
- #define Y_MOVE_TEST !!current_block->steps[B_AXIS]
- #endif
- #if CORE_IS_XZ || CORE_IS_YZ
- /**
- * Head direction in -Z axis for CoreXZ or CoreYZ bots.
- *
- * If steps differ, both axes are moving
- * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y, already handled above)
- * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z)
- */
- #if ENABLED(COREZX) || ENABLED(COREZY)
- #define Z_CMP ==
- #else
- #define Z_CMP !=
- #endif
- #define Z_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) Z_CMP D_(2)) )
- #else
- #define Z_MOVE_TEST !!current_block->steps[C_AXIS]
- #endif
- uint8_t axis_bits = 0;
- if (X_MOVE_TEST) SBI(axis_bits, A_AXIS);
- if (Y_MOVE_TEST) SBI(axis_bits, B_AXIS);
- if (Z_MOVE_TEST) SBI(axis_bits, C_AXIS);
- //if (!!current_block->steps[E_AXIS]) SBI(axis_bits, E_AXIS);
- //if (!!current_block->steps[A_AXIS]) SBI(axis_bits, X_HEAD);
- //if (!!current_block->steps[B_AXIS]) SBI(axis_bits, Y_HEAD);
- //if (!!current_block->steps[C_AXIS]) SBI(axis_bits, Z_HEAD);
- axis_did_move = axis_bits;
- // No acceleration / deceleration time elapsed so far
- acceleration_time = deceleration_time = 0;
- uint8_t oversampling = 0; // Assume we won't use it
- #if ENABLED(ADAPTIVE_STEP_SMOOTHING)
- // At this point, we must decide if we can use Stepper movement axis smoothing.
- uint32_t max_rate = current_block->nominal_rate; // Get the maximum rate (maximum event speed)
- while (max_rate < MIN_STEP_ISR_FREQUENCY) {
- max_rate <<= 1;
- if (max_rate >= MAX_STEP_ISR_FREQUENCY_1X) break;
- ++oversampling;
- }
- oversampling_factor = oversampling;
- #endif
- // Based on the oversampling factor, do the calculations
- step_event_count = current_block->step_event_count << oversampling;
- // Initialize Bresenham delta errors to 1/2
- delta_error[X_AXIS] = delta_error[Y_AXIS] = delta_error[Z_AXIS] = delta_error[E_AXIS] = -int32_t(step_event_count);
- // Calculate Bresenham dividends
- advance_dividend[X_AXIS] = current_block->steps[X_AXIS] << 1;
- advance_dividend[Y_AXIS] = current_block->steps[Y_AXIS] << 1;
- advance_dividend[Z_AXIS] = current_block->steps[Z_AXIS] << 1;
- advance_dividend[E_AXIS] = current_block->steps[E_AXIS] << 1;
- // Calculate Bresenham divisor
- advance_divisor = step_event_count << 1;
- // No step events completed so far
- step_events_completed = 0;
- // Compute the acceleration and deceleration points
- accelerate_until = current_block->accelerate_until << oversampling;
- decelerate_after = current_block->decelerate_after << oversampling;
- #if ENABLED(MIXING_EXTRUDER)
- const uint32_t e_steps = (
- #if ENABLED(LIN_ADVANCE)
- current_block->steps[E_AXIS]
- #else
- step_event_count
- #endif
- );
- MIXING_STEPPERS_LOOP(i) {
- delta_error_m[i] = -int32_t(e_steps);
- advance_dividend_m[i] = current_block->mix_steps[i] << 1;
- }
- advance_divisor_m = e_steps << 1;
- #else
- active_extruder = current_block->active_extruder;
- #endif
- // Initialize the trapezoid generator from the current block.
- #if ENABLED(LIN_ADVANCE)
- #if DISABLED(MIXING_EXTRUDER) && E_STEPPERS > 1
- // If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
- if (active_extruder != last_moved_extruder) LA_current_adv_steps = 0;
- #endif
- if ((LA_use_advance_lead = current_block->use_advance_lead)) {
- LA_final_adv_steps = current_block->final_adv_steps;
- LA_max_adv_steps = current_block->max_adv_steps;
- //Start the ISR
- nextAdvanceISR = 0;
- LA_isr_rate = current_block->advance_speed;
- }
- else LA_isr_rate = LA_ADV_NEVER;
- #endif
- if (current_block->direction_bits != last_direction_bits
- #if DISABLED(MIXING_EXTRUDER)
- || active_extruder != last_moved_extruder
- #endif
- ) {
- last_direction_bits = current_block->direction_bits;
- #if DISABLED(MIXING_EXTRUDER)
- last_moved_extruder = active_extruder;
- #endif
- set_directions();
- }
- // At this point, we must ensure the movement about to execute isn't
- // trying to force the head against a limit switch. If using interrupt-
- // driven change detection, and already against a limit then no call to
- // the endstop_triggered method will be done and the movement will be
- // done against the endstop. So, check the limits here: If the movement
- // is against the limits, the block will be marked as to be killed, and
- // on the next call to this ISR, will be discarded.
- endstops.update();
- #if ENABLED(Z_LATE_ENABLE)
- // If delayed Z enable, enable it now. This option will severely interfere with
- // timing between pulses when chaining motion between blocks, and it could lead
- // to lost steps in both X and Y axis, so avoid using it unless strictly necessary!!
- if (current_block->steps[Z_AXIS]) enable_Z();
- #endif
- // Mark the time_nominal as not calculated yet
- ticks_nominal = -1;
- #if DISABLED(S_CURVE_ACCELERATION)
- // Set as deceleration point the initial rate of the block
- acc_step_rate = current_block->initial_rate;
- #endif
- #if ENABLED(S_CURVE_ACCELERATION)
- // Initialize the Bézier speed curve
- _calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
- // We haven't started the 2nd half of the trapezoid
- bezier_2nd_half = false;
- #endif
- // Calculate the initial timer interval
- interval = calc_timer_interval(current_block->initial_rate, oversampling_factor, &steps_per_isr);
- }
- }
- // Return the interval to wait
- return interval;
- }
- #if ENABLED(LIN_ADVANCE)
- // Timer interrupt for E. LA_steps is set in the main routine
- uint32_t Stepper::advance_isr() {
- uint32_t interval;
- if (LA_use_advance_lead) {
- if (step_events_completed > decelerate_after && LA_current_adv_steps > LA_final_adv_steps) {
- LA_steps--;
- LA_current_adv_steps--;
- interval = LA_isr_rate;
- }
- else if (step_events_completed < decelerate_after && LA_current_adv_steps < LA_max_adv_steps) {
- //step_events_completed <= (uint32_t)accelerate_until) {
- LA_steps++;
- LA_current_adv_steps++;
- interval = LA_isr_rate;
- }
- else
- interval = LA_isr_rate = LA_ADV_NEVER;
- }
- else
- interval = LA_ADV_NEVER;
- #if ENABLED(MIXING_EXTRUDER)
- if (LA_steps >= 0)
- MIXING_STEPPERS_LOOP(j) NORM_E_DIR(j);
- else
- MIXING_STEPPERS_LOOP(j) REV_E_DIR(j);
- #else
- if (LA_steps >= 0)
- NORM_E_DIR(active_extruder);
- else
- REV_E_DIR(active_extruder);
- #endif
- // Get the timer count and estimate the end of the pulse
- hal_timer_t pulse_end = HAL_timer_get_count(PULSE_TIMER_NUM) + hal_timer_t(MIN_PULSE_TICKS);
- const hal_timer_t added_step_ticks = hal_timer_t(ADDED_STEP_TICKS);
- // Step E stepper if we have steps
- while (LA_steps) {
- // Set the STEP pulse ON
- #if ENABLED(MIXING_EXTRUDER)
- MIXING_STEPPERS_LOOP(j) {
- // Step mixing steppers (proportionally)
- delta_error_m[j] += advance_dividend_m[j];
- // Step when the counter goes over zero
- if (delta_error_m[j] >= 0) E_STEP_WRITE(j, !INVERT_E_STEP_PIN);
- }
- #else
- E_STEP_WRITE(active_extruder, !INVERT_E_STEP_PIN);
- #endif
- // Enforce a minimum duration for STEP pulse ON
- #if MINIMUM_STEPPER_PULSE
- // Just wait for the requested pulse duration
- while (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ }
- #endif
- // Add the delay needed to ensure the maximum driver rate is enforced
- if (signed(added_step_ticks) > 0) pulse_end += hal_timer_t(added_step_ticks);
- LA_steps < 0 ? ++LA_steps : --LA_steps;
- // Set the STEP pulse OFF
- #if ENABLED(MIXING_EXTRUDER)
- MIXING_STEPPERS_LOOP(j) {
- if (delta_error_m[j] >= 0) {
- delta_error_m[j] -= advance_divisor_m;
- E_STEP_WRITE(j, INVERT_E_STEP_PIN);
- }
- }
- #else
- E_STEP_WRITE(active_extruder, INVERT_E_STEP_PIN);
- #endif
- // For minimum pulse time wait before looping
- // Just wait for the requested pulse duration
- if (LA_steps) {
- while (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ }
- #if MINIMUM_STEPPER_PULSE
- // Add to the value, the time that the pulse must be active (to be used on the next loop)
- pulse_end += hal_timer_t(MIN_PULSE_TICKS);
- #endif
- }
- } // LA_steps
- return interval;
- }
- #endif // LIN_ADVANCE
- // Check if the given block is busy or not - Must not be called from ISR contexts
- // The current_block could change in the middle of the read by an Stepper ISR, so
- // we must explicitly prevent that!
- bool Stepper::is_block_busy(const block_t* const block) {
- #define sw_barrier() asm volatile("": : :"memory");
- // Keep reading until 2 consecutive reads return the same value,
- // meaning there was no update in-between caused by an interrupt.
- // This works because stepper ISRs happen at a slower rate than
- // successive reads of a variable, so 2 consecutive reads with
- // the same value means no interrupt updated it.
- block_t* vold, *vnew = current_block;
- sw_barrier();
- do {
- vold = vnew;
- vnew = current_block;
- sw_barrier();
- } while (vold != vnew);
- // Return if the block is busy or not
- return block == vnew;
- }
- void Stepper::init() {
- // Init Digipot Motor Current
- #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
- digipot_init();
- #endif
- // Init Microstepping Pins
- #if HAS_MICROSTEPS
- microstep_init();
- #endif
- // Init Dir Pins
- #if HAS_X_DIR
- X_DIR_INIT;
- #endif
- #if HAS_X2_DIR
- X2_DIR_INIT;
- #endif
- #if HAS_Y_DIR
- Y_DIR_INIT;
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
- Y2_DIR_INIT;
- #endif
- #endif
- #if HAS_Z_DIR
- Z_DIR_INIT;
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
- Z2_DIR_INIT;
- #endif
- #endif
- #if HAS_E0_DIR
- E0_DIR_INIT;
- #endif
- #if HAS_E1_DIR
- E1_DIR_INIT;
- #endif
- #if HAS_E2_DIR
- E2_DIR_INIT;
- #endif
- #if HAS_E3_DIR
- E3_DIR_INIT;
- #endif
- #if HAS_E4_DIR
- E4_DIR_INIT;
- #endif
- // Init Enable Pins - steppers default to disabled.
- #if HAS_X_ENABLE
- X_ENABLE_INIT;
- if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
- #if (ENABLED(DUAL_X_CARRIAGE) || ENABLED(X_DUAL_STEPPER_DRIVERS)) && HAS_X2_ENABLE
- X2_ENABLE_INIT;
- if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if HAS_Y_ENABLE
- Y_ENABLE_INIT;
- if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
- Y2_ENABLE_INIT;
- if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if HAS_Z_ENABLE
- Z_ENABLE_INIT;
- if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
- Z2_ENABLE_INIT;
- if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if HAS_E0_ENABLE
- E0_ENABLE_INIT;
- if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E1_ENABLE
- E1_ENABLE_INIT;
- if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E2_ENABLE
- E2_ENABLE_INIT;
- if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E3_ENABLE
- E3_ENABLE_INIT;
- if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E4_ENABLE
- E4_ENABLE_INIT;
- if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
- #endif
- #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
- #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
- #define _DISABLE(AXIS) disable_## AXIS()
- #define AXIS_INIT(AXIS, PIN) \
- _STEP_INIT(AXIS); \
- _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
- _DISABLE(AXIS)
- #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
- // Init Step Pins
- #if HAS_X_STEP
- #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
- X2_STEP_INIT;
- X2_STEP_WRITE(INVERT_X_STEP_PIN);
- #endif
- AXIS_INIT(X, X);
- #endif
- #if HAS_Y_STEP
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
- Y2_STEP_INIT;
- Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
- #endif
- AXIS_INIT(Y, Y);
- #endif
- #if HAS_Z_STEP
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
- Z2_STEP_INIT;
- Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
- #endif
- AXIS_INIT(Z, Z);
- #endif
- #if E_STEPPERS > 0 && HAS_E0_STEP
- E_AXIS_INIT(0);
- #endif
- #if E_STEPPERS > 1 && HAS_E1_STEP
- E_AXIS_INIT(1);
- #endif
- #if E_STEPPERS > 2 && HAS_E2_STEP
- E_AXIS_INIT(2);
- #endif
- #if E_STEPPERS > 3 && HAS_E3_STEP
- E_AXIS_INIT(3);
- #endif
- #if E_STEPPERS > 4 && HAS_E4_STEP
- E_AXIS_INIT(4);
- #endif
- // Init Stepper ISR to 122 Hz for quick starting
- HAL_timer_start(STEP_TIMER_NUM, 122); // OCR1A = 0x4000
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- endstops.enable(true); // Start with endstops active. After homing they can be disabled
- sei();
- set_directions(); // Init directions to last_direction_bits = 0
- }
- /**
- * Set the stepper positions directly in steps
- *
- * The input is based on the typical per-axis XYZ steps.
- * For CORE machines XYZ needs to be translated to ABC.
- *
- * This allows get_axis_position_mm to correctly
- * derive the current XYZ position later on.
- */
- void Stepper::_set_position(const int32_t &a, const int32_t &b, const int32_t &c,
- #if ENABLED(HANGPRINTER)
- const int32_t &d,
- #endif
- const int32_t &e
- ) {
- #if CORE_IS_XY
- // corexy positioning
- // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
- count_position[A_AXIS] = a + b;
- count_position[B_AXIS] = CORESIGN(a - b);
- count_position[Z_AXIS] = c;
- #elif CORE_IS_XZ
- // corexz planning
- count_position[A_AXIS] = a + c;
- count_position[Y_AXIS] = b;
- count_position[C_AXIS] = CORESIGN(a - c);
- #elif CORE_IS_YZ
- // coreyz planning
- count_position[X_AXIS] = a;
- count_position[B_AXIS] = b + c;
- count_position[C_AXIS] = CORESIGN(b - c);
- #else
- // default non-h-bot planning
- count_position[X_AXIS] = a;
- count_position[Y_AXIS] = b;
- count_position[Z_AXIS] = c;
- #if ENABLED(HANGPRINTER)
- count_position[D_AXIS] = d;
- #endif
- #endif
- count_position[E_AXIS] = e;
- }
- /**
- * Get a stepper's position in steps.
- */
- int32_t Stepper::position(const AxisEnum axis) {
- const bool was_enabled = STEPPER_ISR_ENABLED();
- if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
- const int32_t v = count_position[axis];
- if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
- return v;
- }
- // Signal endstops were triggered - This function can be called from
- // an ISR context (Temperature, Stepper or limits ISR), so we must
- // be very careful here. If the interrupt being preempted was the
- // Stepper ISR (this CAN happen with the endstop limits ISR) then
- // when the stepper ISR resumes, we must be very sure that the movement
- // is properly cancelled
- void Stepper::endstop_triggered(const AxisEnum axis) {
- const bool was_enabled = STEPPER_ISR_ENABLED();
- if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
- #if IS_CORE
- endstops_trigsteps[axis] = 0.5f * (
- axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
- : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
- );
- #else // !COREXY && !COREXZ && !COREYZ
- endstops_trigsteps[axis] = count_position[axis];
- #endif // !COREXY && !COREXZ && !COREYZ
- // Discard the rest of the move if there is a current block
- quick_stop();
- if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
- int32_t Stepper::triggered_position(const AxisEnum axis) {
- const bool was_enabled = STEPPER_ISR_ENABLED();
- if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
- const int32_t v = endstops_trigsteps[axis];
- if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
- return v;
- }
- void Stepper::report_positions() {
- // Protect the access to the position.
- const bool was_enabled = STEPPER_ISR_ENABLED();
- if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
- const int32_t xpos = count_position[X_AXIS],
- ypos = count_position[Y_AXIS],
- #if ENABLED(HANGPRINTER)
- dpos = count_position[D_AXIS],
- #endif
- zpos = count_position[Z_AXIS];
- if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
- #if CORE_IS_XY || CORE_IS_XZ || IS_DELTA || IS_SCARA || ENABLED(HANGPRINTER)
- SERIAL_PROTOCOLPGM(MSG_COUNT_A);
- #else
- SERIAL_PROTOCOLPGM(MSG_COUNT_X);
- #endif
- SERIAL_PROTOCOL(xpos);
- #if CORE_IS_XY || CORE_IS_YZ || IS_DELTA || IS_SCARA || ENABLED(HANGPRINTER)
- SERIAL_PROTOCOLPGM(" B:");
- #else
- SERIAL_PROTOCOLPGM(" Y:");
- #endif
- SERIAL_PROTOCOL(ypos);
- #if CORE_IS_XZ || CORE_IS_YZ || IS_DELTA || ENABLED(HANGPRINTER)
- SERIAL_PROTOCOLPGM(" C:");
- #else
- SERIAL_PROTOCOLPGM(" Z:");
- #endif
- SERIAL_PROTOCOL(zpos);
- #if ENABLED(HANGPRINTER)
- SERIAL_PROTOCOLPAIR(" D:", dpos);
- #endif
- SERIAL_EOL();
- }
- #if ENABLED(BABYSTEPPING)
- #if MINIMUM_STEPPER_PULSE
- #define STEP_PULSE_CYCLES ((MINIMUM_STEPPER_PULSE) * CYCLES_PER_MICROSECOND)
- #else
- #define STEP_PULSE_CYCLES 0
- #endif
- #if ENABLED(DELTA)
- #define CYCLES_EATEN_BABYSTEP (2 * 15)
- #else
- #define CYCLES_EATEN_BABYSTEP 0
- #endif
- #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
- #define _ENABLE(AXIS) enable_## AXIS()
- #define _READ_DIR(AXIS) AXIS ##_DIR_READ
- #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
- #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
- #if EXTRA_CYCLES_BABYSTEP > 20
- #define _SAVE_START const hal_timer_t pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM)
- #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
- #else
- #define _SAVE_START NOOP
- #if EXTRA_CYCLES_BABYSTEP > 0
- #define _PULSE_WAIT DELAY_NS(EXTRA_CYCLES_BABYSTEP * NANOSECONDS_PER_CYCLE)
- #elif STEP_PULSE_CYCLES > 0
- #define _PULSE_WAIT NOOP
- #elif ENABLED(DELTA)
- #define _PULSE_WAIT DELAY_US(2);
- #else
- #define _PULSE_WAIT DELAY_US(4);
- #endif
- #endif
- #define BABYSTEP_AXIS(AXIS, INVERT, DIR) { \
- const uint8_t old_dir = _READ_DIR(AXIS); \
- _ENABLE(AXIS); \
- _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^DIR^INVERT); \
- DELAY_NS(MINIMUM_STEPPER_DIR_DELAY); \
- _SAVE_START; \
- _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
- _PULSE_WAIT; \
- _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
- _APPLY_DIR(AXIS, old_dir); \
- }
- // MUST ONLY BE CALLED BY AN ISR,
- // No other ISR should ever interrupt this!
- void Stepper::babystep(const AxisEnum axis, const bool direction) {
- cli();
- switch (axis) {
- #if ENABLED(BABYSTEP_XY)
- case X_AXIS:
- #if CORE_IS_XY
- BABYSTEP_AXIS(X, false, direction);
- BABYSTEP_AXIS(Y, false, direction);
- #elif CORE_IS_XZ
- BABYSTEP_AXIS(X, false, direction);
- BABYSTEP_AXIS(Z, false, direction);
- #else
- BABYSTEP_AXIS(X, false, direction);
- #endif
- break;
- case Y_AXIS:
- #if CORE_IS_XY
- BABYSTEP_AXIS(X, false, direction);
- BABYSTEP_AXIS(Y, false, direction^(CORESIGN(1)<0));
- #elif CORE_IS_YZ
- BABYSTEP_AXIS(Y, false, direction);
- BABYSTEP_AXIS(Z, false, direction^(CORESIGN(1)<0));
- #else
- BABYSTEP_AXIS(Y, false, direction);
- #endif
- break;
- #endif
- case Z_AXIS: {
- #if CORE_IS_XZ
- BABYSTEP_AXIS(X, BABYSTEP_INVERT_Z, direction);
- BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction^(CORESIGN(1)<0));
- #elif CORE_IS_YZ
- BABYSTEP_AXIS(Y, BABYSTEP_INVERT_Z, direction);
- BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction^(CORESIGN(1)<0));
- #elif DISABLED(DELTA)
- BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction);
- #else // DELTA
- const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
- enable_X();
- enable_Y();
- enable_Z();
- const uint8_t old_x_dir_pin = X_DIR_READ,
- old_y_dir_pin = Y_DIR_READ,
- old_z_dir_pin = Z_DIR_READ;
- X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
- Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
- Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
- #if MINIMUM_STEPPER_DIR_DELAY > 0
- DELAY_NS(MINIMUM_STEPPER_DIR_DELAY);
- #endif
- _SAVE_START;
- X_STEP_WRITE(!INVERT_X_STEP_PIN);
- Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
- Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
- _PULSE_WAIT;
- X_STEP_WRITE(INVERT_X_STEP_PIN);
- Y_STEP_WRITE(INVERT_Y_STEP_PIN);
- Z_STEP_WRITE(INVERT_Z_STEP_PIN);
- // Restore direction bits
- X_DIR_WRITE(old_x_dir_pin);
- Y_DIR_WRITE(old_y_dir_pin);
- Z_DIR_WRITE(old_z_dir_pin);
- #endif
- } break;
- default: break;
- }
- sei();
- }
- #endif // BABYSTEPPING
- /**
- * Software-controlled Stepper Motor Current
- */
- #if HAS_DIGIPOTSS
- // From Arduino DigitalPotControl example
- void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
- WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
- SPI.transfer(address); // Send the address and value via SPI
- SPI.transfer(value);
- WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
- //delay(10);
- }
- #endif // HAS_DIGIPOTSS
- #if HAS_MOTOR_CURRENT_PWM
- void Stepper::refresh_motor_power() {
- for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
- switch (i) {
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
- case 0:
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
- case 1:
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
- case 2:
- #endif
- digipot_current(i, motor_current_setting[i]);
- default: break;
- }
- }
- }
- #endif // HAS_MOTOR_CURRENT_PWM
- #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
- void Stepper::digipot_current(const uint8_t driver, const int current) {
- #if HAS_DIGIPOTSS
- const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
- digitalPotWrite(digipot_ch[driver], current);
- #elif HAS_MOTOR_CURRENT_PWM
- if (WITHIN(driver, 0, 2))
- motor_current_setting[driver] = current; // update motor_current_setting
- #define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
- switch (driver) {
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
- case 0: _WRITE_CURRENT_PWM(XY); break;
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
- case 1: _WRITE_CURRENT_PWM(Z); break;
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
- case 2: _WRITE_CURRENT_PWM(E); break;
- #endif
- }
- #endif
- }
- void Stepper::digipot_init() {
- #if HAS_DIGIPOTSS
- static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
- SPI.begin();
- SET_OUTPUT(DIGIPOTSS_PIN);
- for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
- //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
- digipot_current(i, digipot_motor_current[i]);
- }
- #elif HAS_MOTOR_CURRENT_PWM
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
- SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
- SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
- SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
- #endif
- refresh_motor_power();
- // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
- SET_CS5(PRESCALER_1);
- #endif
- }
- #endif
- #if HAS_MICROSTEPS
- /**
- * Software-controlled Microstepping
- */
- void Stepper::microstep_init() {
- SET_OUTPUT(X_MS1_PIN);
- SET_OUTPUT(X_MS2_PIN);
- #if HAS_Y_MICROSTEPS
- SET_OUTPUT(Y_MS1_PIN);
- SET_OUTPUT(Y_MS2_PIN);
- #endif
- #if HAS_Z_MICROSTEPS
- SET_OUTPUT(Z_MS1_PIN);
- SET_OUTPUT(Z_MS2_PIN);
- #endif
- #if HAS_E0_MICROSTEPS
- SET_OUTPUT(E0_MS1_PIN);
- SET_OUTPUT(E0_MS2_PIN);
- #endif
- #if HAS_E1_MICROSTEPS
- SET_OUTPUT(E1_MS1_PIN);
- SET_OUTPUT(E1_MS2_PIN);
- #endif
- #if HAS_E2_MICROSTEPS
- SET_OUTPUT(E2_MS1_PIN);
- SET_OUTPUT(E2_MS2_PIN);
- #endif
- #if HAS_E3_MICROSTEPS
- SET_OUTPUT(E3_MS1_PIN);
- SET_OUTPUT(E3_MS2_PIN);
- #endif
- #if HAS_E4_MICROSTEPS
- SET_OUTPUT(E4_MS1_PIN);
- SET_OUTPUT(E4_MS2_PIN);
- #endif
- static const uint8_t microstep_modes[] = MICROSTEP_MODES;
- for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
- microstep_mode(i, microstep_modes[i]);
- }
- void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
- if (ms1 >= 0) switch (driver) {
- case 0: WRITE(X_MS1_PIN, ms1); break;
- #if HAS_Y_MICROSTEPS
- case 1: WRITE(Y_MS1_PIN, ms1); break;
- #endif
- #if HAS_Z_MICROSTEPS
- case 2: WRITE(Z_MS1_PIN, ms1); break;
- #endif
- #if HAS_E0_MICROSTEPS
- case 3: WRITE(E0_MS1_PIN, ms1); break;
- #endif
- #if HAS_E1_MICROSTEPS
- case 4: WRITE(E1_MS1_PIN, ms1); break;
- #endif
- #if HAS_E2_MICROSTEPS
- case 5: WRITE(E2_MS1_PIN, ms1); break;
- #endif
- #if HAS_E3_MICROSTEPS
- case 6: WRITE(E3_MS1_PIN, ms1); break;
- #endif
- #if HAS_E4_MICROSTEPS
- case 7: WRITE(E4_MS1_PIN, ms1); break;
- #endif
- }
- if (ms2 >= 0) switch (driver) {
- case 0: WRITE(X_MS2_PIN, ms2); break;
- #if HAS_Y_MICROSTEPS
- case 1: WRITE(Y_MS2_PIN, ms2); break;
- #endif
- #if HAS_Z_MICROSTEPS
- case 2: WRITE(Z_MS2_PIN, ms2); break;
- #endif
- #if HAS_E0_MICROSTEPS
- case 3: WRITE(E0_MS2_PIN, ms2); break;
- #endif
- #if HAS_E1_MICROSTEPS
- case 4: WRITE(E1_MS2_PIN, ms2); break;
- #endif
- #if HAS_E2_MICROSTEPS
- case 5: WRITE(E2_MS2_PIN, ms2); break;
- #endif
- #if HAS_E3_MICROSTEPS
- case 6: WRITE(E3_MS2_PIN, ms2); break;
- #endif
- #if HAS_E4_MICROSTEPS
- case 7: WRITE(E4_MS2_PIN, ms2); break;
- #endif
- }
- }
- void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
- switch (stepping_mode) {
- case 1: microstep_ms(driver, MICROSTEP1); break;
- #if ENABLED(HEROIC_STEPPER_DRIVERS)
- case 128: microstep_ms(driver, MICROSTEP128); break;
- #else
- case 2: microstep_ms(driver, MICROSTEP2); break;
- case 4: microstep_ms(driver, MICROSTEP4); break;
- #endif
- case 8: microstep_ms(driver, MICROSTEP8); break;
- case 16: microstep_ms(driver, MICROSTEP16); break;
- default: SERIAL_ERROR_START(); SERIAL_ERRORLNPGM("Microsteps unavailable"); break;
- }
- }
- void Stepper::microstep_readings() {
- SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
- SERIAL_PROTOCOLPGM("X: ");
- SERIAL_PROTOCOL(READ(X_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
- #if HAS_Y_MICROSTEPS
- SERIAL_PROTOCOLPGM("Y: ");
- SERIAL_PROTOCOL(READ(Y_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
- #endif
- #if HAS_Z_MICROSTEPS
- SERIAL_PROTOCOLPGM("Z: ");
- SERIAL_PROTOCOL(READ(Z_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
- #endif
- #if HAS_E0_MICROSTEPS
- SERIAL_PROTOCOLPGM("E0: ");
- SERIAL_PROTOCOL(READ(E0_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
- #endif
- #if HAS_E1_MICROSTEPS
- SERIAL_PROTOCOLPGM("E1: ");
- SERIAL_PROTOCOL(READ(E1_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
- #endif
- #if HAS_E2_MICROSTEPS
- SERIAL_PROTOCOLPGM("E2: ");
- SERIAL_PROTOCOL(READ(E2_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
- #endif
- #if HAS_E3_MICROSTEPS
- SERIAL_PROTOCOLPGM("E3: ");
- SERIAL_PROTOCOL(READ(E3_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
- #endif
- #if HAS_E4_MICROSTEPS
- SERIAL_PROTOCOLPGM("E4: ");
- SERIAL_PROTOCOL(READ(E4_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
- #endif
- }
- #endif // HAS_MICROSTEPS
|