123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
- /**
- * planner.h
- *
- * Buffer movement commands and manage the acceleration profile plan
- *
- * Derived from Grbl
- * Copyright (c) 2009-2011 Simen Svale Skogsrud
- */
- #ifndef PLANNER_H
- #define PLANNER_H
- #include "types.h"
- #include "enum.h"
- #include "Marlin.h"
- #if ABL_PLANAR
- #include "vector_3.h"
- #endif
- enum BlockFlagBit : char {
- // Recalculate trapezoids on entry junction. For optimization.
- BLOCK_BIT_RECALCULATE,
- // Nominal speed always reached.
- // i.e., The segment is long enough, so the nominal speed is reachable if accelerating
- // from a safe speed (in consideration of jerking from zero speed).
- BLOCK_BIT_NOMINAL_LENGTH,
- // The block is segment 2+ of a longer move
- BLOCK_BIT_CONTINUED,
- // Sync the stepper counts from the block
- BLOCK_BIT_SYNC_POSITION
- };
- enum BlockFlag : char {
- BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE),
- BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH),
- BLOCK_FLAG_CONTINUED = _BV(BLOCK_BIT_CONTINUED),
- BLOCK_FLAG_SYNC_POSITION = _BV(BLOCK_BIT_SYNC_POSITION)
- };
- /**
- * struct block_t
- *
- * A single entry in the planner buffer.
- * Tracks linear movement over multiple axes.
- *
- * The "nominal" values are as-specified by gcode, and
- * may never actually be reached due to acceleration limits.
- */
- typedef struct {
- volatile uint8_t flag; // Block flags (See BlockFlag enum above) - Modified by ISR and main thread!
- #if ENABLED(UNREGISTERED_MOVE_SUPPORT)
- bool count_it;
- #endif
- // Fields used by the motion planner to manage acceleration
- float nominal_speed_sqr, // The nominal speed for this block in (mm/sec)^2
- entry_speed_sqr, // Entry speed at previous-current junction in (mm/sec)^2
- max_entry_speed_sqr, // Maximum allowable junction entry speed in (mm/sec)^2
- millimeters, // The total travel of this block in mm
- acceleration; // acceleration mm/sec^2
- union {
- // Data used by all move blocks
- struct {
- // Fields used by the Bresenham algorithm for tracing the line
- uint32_t steps[NUM_AXIS]; // Step count along each axis
- };
- // Data used by all sync blocks
- struct {
- int32_t position[NUM_AXIS]; // New position to force when this sync block is executed
- };
- };
- uint32_t step_event_count; // The number of step events required to complete this block
- uint8_t active_extruder; // The extruder to move (if E move)
- #if ENABLED(MIXING_EXTRUDER)
- uint32_t mix_steps[MIXING_STEPPERS]; // Scaled steps[E_AXIS] for the mixing steppers
- #endif
- // Settings for the trapezoid generator
- uint32_t accelerate_until, // The index of the step event on which to stop acceleration
- decelerate_after; // The index of the step event on which to start decelerating
- #if ENABLED(S_CURVE_ACCELERATION)
- uint32_t cruise_rate, // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase
- acceleration_time, // Acceleration time and deceleration time in STEP timer counts
- deceleration_time,
- acceleration_time_inverse, // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used
- deceleration_time_inverse;
- #else
- uint32_t acceleration_rate; // The acceleration rate used for acceleration calculation
- #endif
- uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
- // Advance extrusion
- #if ENABLED(LIN_ADVANCE)
- bool use_advance_lead;
- uint16_t advance_speed, // STEP timer value for extruder speed offset ISR
- max_adv_steps, // max. advance steps to get cruising speed pressure (not always nominal_speed!)
- final_adv_steps; // advance steps due to exit speed
- float e_D_ratio;
- #endif
- uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
- initial_rate, // The jerk-adjusted step rate at start of block
- final_rate, // The minimal rate at exit
- acceleration_steps_per_s2; // acceleration steps/sec^2
- #if FAN_COUNT > 0
- uint16_t fan_speed[FAN_COUNT];
- #endif
- #if ENABLED(BARICUDA)
- uint8_t valve_pressure, e_to_p_pressure;
- #endif
- uint32_t segment_time_us;
- } block_t;
- #define HAS_POSITION_FLOAT (ENABLED(LIN_ADVANCE) || HAS_FEEDRATE_SCALING)
- #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
- class Planner {
- public:
- /**
- * The move buffer, calculated in stepper steps
- *
- * block_buffer is a ring buffer...
- *
- * head,tail : indexes for write,read
- * head==tail : the buffer is empty
- * head!=tail : blocks are in the buffer
- * head==(tail-1)%size : the buffer is full
- *
- * Writer of head is Planner::buffer_segment().
- * Reader of tail is Stepper::isr(). Always consider tail busy / read-only
- */
- static block_t block_buffer[BLOCK_BUFFER_SIZE];
- static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
- block_buffer_nonbusy, // Index of the first non busy block
- block_buffer_planned, // Index of the optimally planned block
- block_buffer_tail; // Index of the busy block, if any
- static uint16_t cleaning_buffer_counter; // A counter to disable queuing of blocks
- static uint8_t delay_before_delivering; // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks
- #if ENABLED(DISTINCT_E_FACTORS)
- static uint8_t last_extruder; // Respond to extruder change
- #endif
- static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
- static float e_factor[EXTRUDERS]; // The flow percentage and volumetric multiplier combine to scale E movement
- #if DISABLED(NO_VOLUMETRICS)
- static float filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
- volumetric_area_nominal, // Nominal cross-sectional area
- volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
- // May be auto-adjusted by a filament width sensor
- #endif
- static uint32_t max_acceleration_mm_per_s2[NUM_AXIS_N], // (mm/s^2) M201 XYZE
- max_acceleration_steps_per_s2[NUM_AXIS_N], // (steps/s^2) Derived from mm_per_s2
- min_segment_time_us; // (µs) M205 Q
- static float max_feedrate_mm_s[NUM_AXIS_N], // (mm/s) M203 XYZE - Max speeds
- axis_steps_per_mm[NUM_AXIS_N], // (steps) M92 XYZE - Steps per millimeter
- steps_to_mm[NUM_AXIS_N], // (mm) Millimeters per step
- min_feedrate_mm_s, // (mm/s) M205 S - Minimum linear feedrate
- acceleration, // (mm/s^2) M204 S - Normal acceleration. DEFAULT ACCELERATION for all printing moves.
- retract_acceleration, // (mm/s^2) M204 R - Retract acceleration. Filament pull-back and push-forward while standing still in the other axes
- travel_acceleration, // (mm/s^2) M204 T - Travel acceleration. DEFAULT ACCELERATION for all NON printing moves.
- min_travel_feedrate_mm_s; // (mm/s) M205 T - Minimum travel feedrate
- #if ENABLED(JUNCTION_DEVIATION)
- static float junction_deviation_mm; // (mm) M205 J
- #if ENABLED(LIN_ADVANCE)
- #if ENABLED(DISTINCT_E_FACTORS)
- static float max_e_jerk[EXTRUDERS]; // Calculated from junction_deviation_mm
- #else
- static float max_e_jerk;
- #endif
- #endif
- #else
- static float max_jerk[NUM_AXIS]; // (mm/s^2) M205 XYZE - The largest speed change requiring no acceleration.
- #endif
- #if ENABLED(LINE_BUILDUP_COMPENSATION_FEATURE)
- /*
- * Parameters for calculating target[]
- * See buildup compensation theory:
- * https://vitana.se/opr3d/tbear/2017.html#hangprinter_project_29
- */
- static float k0[MOV_AXIS],
- k1[MOV_AXIS],
- k2[MOV_AXIS],
- sqrtk1[MOV_AXIS];
- #endif
- #if HAS_LEVELING
- static bool leveling_active; // Flag that bed leveling is enabled
- #if ABL_PLANAR
- static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
- #endif
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- static float z_fade_height, inverse_z_fade_height;
- #endif
- #else
- static constexpr bool leveling_active = false;
- #endif
- #if ENABLED(LIN_ADVANCE)
- static float extruder_advance_K;
- #endif
- #if HAS_POSITION_FLOAT
- static float position_float[NUM_AXIS];
- #endif
- #if ENABLED(SKEW_CORRECTION)
- #if ENABLED(SKEW_CORRECTION_GCODE)
- static float xy_skew_factor;
- #else
- static constexpr float xy_skew_factor = XY_SKEW_FACTOR;
- #endif
- #if ENABLED(SKEW_CORRECTION_FOR_Z)
- #if ENABLED(SKEW_CORRECTION_GCODE)
- static float xz_skew_factor, yz_skew_factor;
- #else
- static constexpr float xz_skew_factor = XZ_SKEW_FACTOR, yz_skew_factor = YZ_SKEW_FACTOR;
- #endif
- #else
- static constexpr float xz_skew_factor = 0, yz_skew_factor = 0;
- #endif
- #endif
- #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
- static bool abort_on_endstop_hit;
- #endif
- private:
- /**
- * The current position of the tool in absolute steps
- * Recalculated if any axis_steps_per_mm are changed by gcode
- */
- static int32_t position[NUM_AXIS];
- /**
- * Speed of previous path line segment
- */
- static float previous_speed[NUM_AXIS];
- /**
- * Nominal speed of previous path line segment (mm/s)^2
- */
- static float previous_nominal_speed_sqr;
- /**
- * Limit where 64bit math is necessary for acceleration calculation
- */
- static uint32_t cutoff_long;
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- static float last_fade_z;
- #endif
- #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
- /**
- * Counters to manage disabling inactive extruders
- */
- static uint8_t g_uc_extruder_last_move[EXTRUDERS];
- #endif // DISABLE_INACTIVE_EXTRUDER
- #ifdef XY_FREQUENCY_LIMIT
- // Used for the frequency limit
- #define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT)
- // Old direction bits. Used for speed calculations
- static unsigned char old_direction_bits;
- // Segment times (in µs). Used for speed calculations
- static uint32_t axis_segment_time_us[2][3];
- #endif
- #if ENABLED(ULTRA_LCD)
- volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
- #endif
- public:
- /**
- * Instance Methods
- */
- Planner();
- void init();
- /**
- * Static (class) Methods
- */
- static void reset_acceleration_rates();
- static void refresh_positioning();
- FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
- e_factor[e] = (flow_percentage[e] * 0.01f
- #if DISABLED(NO_VOLUMETRICS)
- * volumetric_multiplier[e]
- #endif
- );
- }
- // Manage fans, paste pressure, etc.
- static void check_axes_activity();
- // Update multipliers based on new diameter measurements
- static void calculate_volumetric_multipliers();
- #if ENABLED(FILAMENT_WIDTH_SENSOR)
- void calculate_volumetric_for_width_sensor(const int8_t encoded_ratio);
- #endif
- #if DISABLED(NO_VOLUMETRICS)
- FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
- filament_size[e] = v;
- // make sure all extruders have some sane value for the filament size
- for (uint8_t i = 0; i < COUNT(filament_size); i++)
- if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
- }
- #endif
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- /**
- * Get the Z leveling fade factor based on the given Z height,
- * re-calculating only when needed.
- *
- * Returns 1.0 if planner.z_fade_height is 0.0.
- * Returns 0.0 if Z is past the specified 'Fade Height'.
- */
- inline static float fade_scaling_factor_for_z(const float &rz) {
- static float z_fade_factor = 1;
- if (z_fade_height) {
- if (rz >= z_fade_height) return 0;
- if (last_fade_z != rz) {
- last_fade_z = rz;
- z_fade_factor = 1 - rz * inverse_z_fade_height;
- }
- return z_fade_factor;
- }
- return 1;
- }
- FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999f; }
- FORCE_INLINE static void set_z_fade_height(const float &zfh) {
- z_fade_height = zfh > 0 ? zfh : 0;
- inverse_z_fade_height = RECIPROCAL(z_fade_height);
- force_fade_recalc();
- }
- FORCE_INLINE static bool leveling_active_at_z(const float &rz) {
- return !z_fade_height || rz < z_fade_height;
- }
- #else
- FORCE_INLINE static float fade_scaling_factor_for_z(const float &rz) {
- UNUSED(rz);
- return 1;
- }
- FORCE_INLINE static bool leveling_active_at_z(const float &rz) { UNUSED(rz); return true; }
- #endif
- #if ENABLED(SKEW_CORRECTION)
- FORCE_INLINE static void skew(float &cx, float &cy, const float &cz) {
- if (WITHIN(cx, X_MIN_POS + 1, X_MAX_POS) && WITHIN(cy, Y_MIN_POS + 1, Y_MAX_POS)) {
- const float sx = cx - cy * xy_skew_factor - cz * (xz_skew_factor - (xy_skew_factor * yz_skew_factor)),
- sy = cy - cz * yz_skew_factor;
- if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
- cx = sx; cy = sy;
- }
- }
- }
- FORCE_INLINE static void unskew(float &cx, float &cy, const float &cz) {
- if (WITHIN(cx, X_MIN_POS, X_MAX_POS) && WITHIN(cy, Y_MIN_POS, Y_MAX_POS)) {
- const float sx = cx + cy * xy_skew_factor + cz * xz_skew_factor,
- sy = cy + cz * yz_skew_factor;
- if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
- cx = sx; cy = sy;
- }
- }
- }
- #endif // SKEW_CORRECTION
- #if PLANNER_LEVELING || HAS_UBL_AND_CURVES
- /**
- * Apply leveling to transform a cartesian position
- * as it will be given to the planner and steppers.
- */
- static void apply_leveling(float &rx, float &ry, float &rz);
- FORCE_INLINE static void apply_leveling(float (&raw)[XYZ]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
- #endif
- #if PLANNER_LEVELING
- #define ARG_X float rx
- #define ARG_Y float ry
- #define ARG_Z float rz
- #if ENABLED(HANGPRINTER)
- #define ARG_E1 float re1
- #endif
- static void unapply_leveling(float raw[XYZ]);
- #else
- #define ARG_X const float &rx
- #define ARG_Y const float &ry
- #define ARG_Z const float &rz
- #if ENABLED(HANGPRINTER)
- #define ARG_E1 const float &re1
- #endif
- #endif
- // Number of moves currently in the planner including the busy block, if any
- FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail); }
- // Number of nonbusy moves currently in the planner
- FORCE_INLINE static uint8_t nonbusy_movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_nonbusy); }
- // Remove all blocks from the buffer
- FORCE_INLINE static void clear_block_buffer() { block_buffer_nonbusy = block_buffer_planned = block_buffer_head = block_buffer_tail = 0; }
- // Check if movement queue is full
- FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
- // Get count of movement slots free
- FORCE_INLINE static uint8_t moves_free() { return BLOCK_BUFFER_SIZE - 1 - movesplanned(); }
- /**
- * Planner::get_next_free_block
- *
- * - Get the next head indices (passed by reference)
- * - Wait for the number of spaces to open up in the planner
- * - Return the first head block
- */
- FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head, const uint8_t count=1) {
- // Wait until there are enough slots free
- while (moves_free() < count) { idle(); }
- // Return the first available block
- next_buffer_head = next_block_index(block_buffer_head);
- return &block_buffer[block_buffer_head];
- }
- /**
- * Planner::_buffer_steps
- *
- * Add a new linear movement to the buffer (in terms of steps).
- *
- * target - target position in steps units
- * fr_mm_s - (target) speed of the move
- * extruder - target extruder
- * millimeters - the length of the movement, if known
- * count_it - apply this move to the counters (UNREGISTERED_MOVE_SUPPORT)
- *
- * Returns true if movement was buffered, false otherwise
- */
- static bool _buffer_steps(const int32_t (&target)[NUM_AXIS]
- #if HAS_POSITION_FLOAT
- , const float (&target_float)[NUM_AXIS]
- #endif
- , float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
- #if ENABLED(UNREGISTERED_MOVE_SUPPORT)
- , const bool count_it=true
- #endif
- );
- /**
- * Planner::_populate_block
- *
- * Fills a new linear movement in the block (in terms of steps).
- *
- * target - target position in steps units
- * fr_mm_s - (target) speed of the move
- * extruder - target extruder
- * millimeters - the length of the movement, if known
- * count_it - apply this move to the counters (UNREGISTERED_MOVE_SUPPORT)
- *
- * Returns true is movement is acceptable, false otherwise
- */
- static bool _populate_block(block_t * const block, bool split_move,
- const int32_t (&target)[NUM_AXIS]
- #if HAS_POSITION_FLOAT
- , const float (&target_float)[NUM_AXIS]
- #endif
- , float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
- #if ENABLED(UNREGISTERED_MOVE_SUPPORT)
- , const bool count_it=true
- #endif
- );
- /**
- * Planner::buffer_sync_block
- * Add a block to the buffer that just updates the position
- */
- static void buffer_sync_block();
- /**
- * Planner::buffer_segment
- *
- * Add a new linear movement to the buffer in axis units.
- *
- * Leveling and kinematics should be applied ahead of calling this.
- *
- * a,b,c,e - target positions in mm and/or degrees
- * (a, b, c, d, e for Hangprinter)
- * fr_mm_s - (target) speed of the move
- * extruder - target extruder
- * millimeters - the length of the movement, if known
- * count_it - remember this move in its counters (UNREGISTERED_MOVE_SUPPORT)
- */
- static bool buffer_segment(const float &a, const float &b, const float &c,
- #if ENABLED(HANGPRINTER)
- const float &d,
- #endif
- const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0
- #if ENABLED(UNREGISTERED_MOVE_SUPPORT)
- , bool count_it=true
- #endif
- );
- static void _set_position_mm(const float &a, const float &b, const float &c,
- #if ENABLED(HANGPRINTER)
- const float &d,
- #endif
- const float &e
- );
- /**
- * Add a new linear movement to the buffer.
- * The target is NOT translated to delta/scara
- *
- * Leveling will be applied to input on cartesians.
- * Kinematic machines should call buffer_line_kinematic (for leveled moves).
- * (Cartesians may also call buffer_line_kinematic.)
- *
- * rx,ry,rz,e - target position in mm or degrees
- * (rx, ry, rz, re1 for Hangprinter)
- * fr_mm_s - (target) speed of the move (mm/s)
- * extruder - target extruder
- * millimeters - the length of the movement, if known
- */
- FORCE_INLINE static bool buffer_line(ARG_X, ARG_Y, ARG_Z,
- #if ENABLED(HANGPRINTER)
- ARG_E1,
- #endif
- const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0
- ) {
- #if PLANNER_LEVELING && IS_CARTESIAN
- apply_leveling(rx, ry, rz);
- #endif
- return buffer_segment(rx, ry, rz,
- #if ENABLED(HANGPRINTER)
- re1,
- #endif
- e, fr_mm_s, extruder, millimeters
- );
- }
- /**
- * Add a new linear movement to the buffer.
- * The target is cartesian, it's translated to delta/scara if
- * needed.
- *
- * cart - x,y,z,e CARTESIAN target in mm
- * fr_mm_s - (target) speed of the move (mm/s)
- * extruder - target extruder
- * millimeters - the length of the movement, if known
- */
- FORCE_INLINE static bool buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) {
- #if PLANNER_LEVELING
- float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
- apply_leveling(raw);
- #else
- const float (&raw)[XYZE] = cart;
- #endif
- #if IS_KINEMATIC
- inverse_kinematics(raw);
- return buffer_segment(
- #if ENABLED(HANGPRINTER)
- line_lengths[A_AXIS], line_lengths[B_AXIS], line_lengths[C_AXIS], line_lengths[D_AXIS]
- #else
- delta[A_AXIS], delta[B_AXIS], delta[C_AXIS]
- #endif
- , cart[E_CART], fr_mm_s, extruder, millimeters
- );
- #else
- return buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_CART], fr_mm_s, extruder, millimeters);
- #endif
- }
- /**
- * Set the planner.position and individual stepper positions.
- * Used by G92, G28, G29, and other procedures.
- *
- * Multiplies by axis_steps_per_mm[] and does necessary conversion
- * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
- *
- * Clears previous speed values.
- */
- FORCE_INLINE static void set_position_mm(ARG_X, ARG_Y, ARG_Z,
- #if ENABLED(HANGPRINTER)
- ARG_E1,
- #endif
- const float &e
- ) {
- #if PLANNER_LEVELING && IS_CARTESIAN
- apply_leveling(rx, ry, rz);
- #endif
- _set_position_mm(rx, ry, rz,
- #if ENABLED(HANGPRINTER)
- re1,
- #endif
- e
- );
- }
- static void set_position_mm_kinematic(const float (&cart)[XYZE]);
- static void set_position_mm(const AxisEnum axis, const float &v);
- FORCE_INLINE static void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); }
- FORCE_INLINE static void set_e_position_mm(const float &e) { set_position_mm(E_AXIS, e); }
- /**
- * Get an axis position according to stepper position(s)
- * For CORE machines apply translation from ABC to XYZ.
- */
- static float get_axis_position_mm(const AxisEnum axis);
- // SCARA AB axes are in degrees, not mm
- #if IS_SCARA
- FORCE_INLINE static float get_axis_position_degrees(const AxisEnum axis) { return get_axis_position_mm(axis); }
- #endif
- // Called to force a quick stop of the machine (for example, when an emergency
- // stop is required, or when endstops are hit)
- static void quick_stop();
- // Called when an endstop is triggered. Causes the machine to stop inmediately
- static void endstop_triggered(const AxisEnum axis);
- // Triggered position of an axis in mm (not core-savvy)
- static float triggered_position_mm(const AxisEnum axis);
- // Block until all buffered steps are executed / cleaned
- static void synchronize();
- // Wait for moves to finish and disable all steppers
- static void finish_and_disable();
- // Periodic tick to handle cleaning timeouts
- // Called from the Temperature ISR at ~1kHz
- static void tick() {
- if (cleaning_buffer_counter) {
- --cleaning_buffer_counter;
- #if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND)
- if (!cleaning_buffer_counter) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
- #endif
- }
- }
- /**
- * Does the buffer have any blocks queued?
- */
- FORCE_INLINE static bool has_blocks_queued() { return (block_buffer_head != block_buffer_tail); }
- /**
- * The current block. NULL if the buffer is empty.
- * This also marks the block as busy.
- * WARNING: Called from Stepper ISR context!
- */
- static block_t* get_current_block() {
- // Get the number of moves in the planner queue so far
- const uint8_t nr_moves = movesplanned();
- // If there are any moves queued ...
- if (nr_moves) {
- // If there is still delay of delivery of blocks running, decrement it
- if (delay_before_delivering) {
- --delay_before_delivering;
- // If the number of movements queued is less than 3, and there is still time
- // to wait, do not deliver anything
- if (nr_moves < 3 && delay_before_delivering) return NULL;
- delay_before_delivering = 0;
- }
- // If we are here, there is no excuse to deliver the block
- block_t * const block = &block_buffer[block_buffer_tail];
- // No trapezoid calculated? Don't execute yet.
- if (TEST(block->flag, BLOCK_BIT_RECALCULATE)) return NULL;
- #if ENABLED(ULTRA_LCD)
- block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
- #endif
- // As this block is busy, advance the nonbusy block pointer
- block_buffer_nonbusy = next_block_index(block_buffer_tail);
- // Push block_buffer_planned pointer, if encountered.
- if (block_buffer_tail == block_buffer_planned)
- block_buffer_planned = block_buffer_nonbusy;
- // Return the block
- return block;
- }
- // The queue became empty
- #if ENABLED(ULTRA_LCD)
- clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
- #endif
- return NULL;
- }
- /**
- * "Discard" the block and "release" the memory.
- * Called when the current block is no longer needed.
- * NB: There MUST be a current block to call this function!!
- */
- FORCE_INLINE static void discard_current_block() {
- if (has_blocks_queued())
- block_buffer_tail = next_block_index(block_buffer_tail);
- }
- #if ENABLED(ULTRA_LCD)
- static uint16_t block_buffer_runtime() {
- bool was_enabled = STEPPER_ISR_ENABLED();
- if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
- millis_t bbru = block_buffer_runtime_us;
- if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
- // To translate µs to ms a division by 1000 would be required.
- // We introduce 2.4% error here by dividing by 1024.
- // Doesn't matter because block_buffer_runtime_us is already too small an estimation.
- bbru >>= 10;
- // limit to about a minute.
- NOMORE(bbru, 0xFFFFul);
- return bbru;
- }
- static void clear_block_buffer_runtime() {
- bool was_enabled = STEPPER_ISR_ENABLED();
- if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
- block_buffer_runtime_us = 0;
- if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
- #endif
- #if ENABLED(AUTOTEMP)
- static float autotemp_min, autotemp_max, autotemp_factor;
- static bool autotemp_enabled;
- static void getHighESpeed();
- static void autotemp_M104_M109();
- #endif
- #if ENABLED(JUNCTION_DEVIATION)
- FORCE_INLINE static void recalculate_max_e_jerk() {
- #define GET_MAX_E_JERK(N) SQRT(SQRT(0.5) * junction_deviation_mm * (N) * RECIPROCAL(1.0 - SQRT(0.5)))
- #if ENABLED(LIN_ADVANCE)
- #if ENABLED(DISTINCT_E_FACTORS)
- for (uint8_t i = 0; i < EXTRUDERS; i++)
- max_e_jerk[i] = GET_MAX_E_JERK(max_acceleration_mm_per_s2[E_AXIS + i]);
- #else
- max_e_jerk = GET_MAX_E_JERK(max_acceleration_mm_per_s2[E_AXIS]);
- #endif
- #endif
- }
- #endif
- private:
- /**
- * Get the index of the next / previous block in the ring buffer
- */
- static constexpr uint8_t next_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index + 1); }
- static constexpr uint8_t prev_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index - 1); }
- /**
- * Calculate the distance (not time) it takes to accelerate
- * from initial_rate to target_rate using the given acceleration:
- */
- static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
- if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
- return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
- }
- /**
- * Return the point at which you must start braking (at the rate of -'accel') if
- * you start at 'initial_rate', accelerate (until reaching the point), and want to end at
- * 'final_rate' after traveling 'distance'.
- *
- * This is used to compute the intersection point between acceleration and deceleration
- * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
- */
- static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
- if (accel == 0) return 0; // accel was 0, set intersection distance to 0
- return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
- }
- /**
- * Calculate the maximum allowable speed squared at this point, in order
- * to reach 'target_velocity_sqr' using 'acceleration' within a given
- * 'distance'.
- */
- static float max_allowable_speed_sqr(const float &accel, const float &target_velocity_sqr, const float &distance) {
- return target_velocity_sqr - 2 * accel * distance;
- }
- #if ENABLED(S_CURVE_ACCELERATION)
- /**
- * Calculate the speed reached given initial speed, acceleration and distance
- */
- static float final_speed(const float &initial_velocity, const float &accel, const float &distance) {
- return SQRT(sq(initial_velocity) + 2 * accel * distance);
- }
- #endif
- static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
- static void reverse_pass_kernel(block_t* const current, const block_t * const next);
- static void forward_pass_kernel(const block_t * const previous, block_t* const current, uint8_t block_index);
- static void reverse_pass();
- static void forward_pass();
- static void recalculate_trapezoids();
- static void recalculate();
- #if ENABLED(JUNCTION_DEVIATION)
- FORCE_INLINE static void normalize_junction_vector(float (&vector)[XYZE]) {
- float magnitude_sq = 0;
- LOOP_XYZE(idx) if (vector[idx]) magnitude_sq += sq(vector[idx]);
- const float inv_magnitude = RSQRT(magnitude_sq);
- LOOP_XYZE(idx) vector[idx] *= inv_magnitude;
- }
- FORCE_INLINE static float limit_value_by_axis_maximum(const float &max_value, float (&unit_vec)[XYZE]) {
- float limit_value = max_value;
- LOOP_XYZE(idx) if (unit_vec[idx]) // Avoid divide by zero
- NOMORE(limit_value, ABS(max_acceleration_mm_per_s2[idx] / unit_vec[idx]));
- return limit_value;
- }
- #endif // JUNCTION_DEVIATION
- };
- #define PLANNER_XY_FEEDRATE() (MIN(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
- extern Planner planner;
- #endif // PLANNER_H
|