temperature.cpp 67 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * temperature.cpp - temperature control
  24. */
  25. #include "Marlin.h"
  26. #include "temperature.h"
  27. #include "thermistortables.h"
  28. #include "ultralcd.h"
  29. #include "planner.h"
  30. #include "language.h"
  31. #if ENABLED(HEATER_0_USES_MAX6675)
  32. #include "spi.h"
  33. #endif
  34. #if ENABLED(BABYSTEPPING)
  35. #include "stepper.h"
  36. #endif
  37. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  38. #include "endstops.h"
  39. #endif
  40. #if ENABLED(USE_WATCHDOG)
  41. #include "watchdog.h"
  42. #endif
  43. #ifdef K1 // Defined in Configuration.h in the PID settings
  44. #define K2 (1.0-K1)
  45. #endif
  46. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  47. static void* heater_ttbl_map[2] = { (void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
  48. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  49. #else
  50. static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE, (void*)HEATER_4_TEMPTABLE);
  51. static uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN, HEATER_4_TEMPTABLE_LEN);
  52. #endif
  53. Temperature thermalManager;
  54. // public:
  55. float Temperature::current_temperature[HOTENDS] = { 0.0 },
  56. Temperature::current_temperature_bed = 0.0;
  57. int16_t Temperature::current_temperature_raw[HOTENDS] = { 0 },
  58. Temperature::target_temperature[HOTENDS] = { 0 },
  59. Temperature::current_temperature_bed_raw = 0;
  60. #if HAS_HEATER_BED
  61. int16_t Temperature::target_temperature_bed = 0;
  62. #endif
  63. // Initialized by settings.load()
  64. #if ENABLED(PIDTEMP)
  65. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  66. float Temperature::Kp[HOTENDS], Temperature::Ki[HOTENDS], Temperature::Kd[HOTENDS];
  67. #if ENABLED(PID_EXTRUSION_SCALING)
  68. float Temperature::Kc[HOTENDS];
  69. #endif
  70. #else
  71. float Temperature::Kp, Temperature::Ki, Temperature::Kd;
  72. #if ENABLED(PID_EXTRUSION_SCALING)
  73. float Temperature::Kc;
  74. #endif
  75. #endif
  76. #endif
  77. // Initialized by settings.load()
  78. #if ENABLED(PIDTEMPBED)
  79. float Temperature::bedKp, Temperature::bedKi, Temperature::bedKd;
  80. #endif
  81. #if ENABLED(BABYSTEPPING)
  82. volatile int Temperature::babystepsTodo[XYZ] = { 0 };
  83. #endif
  84. #if WATCH_HOTENDS
  85. uint16_t Temperature::watch_target_temp[HOTENDS] = { 0 };
  86. millis_t Temperature::watch_heater_next_ms[HOTENDS] = { 0 };
  87. #endif
  88. #if WATCH_THE_BED
  89. uint16_t Temperature::watch_target_bed_temp = 0;
  90. millis_t Temperature::watch_bed_next_ms = 0;
  91. #endif
  92. #if ENABLED(PREVENT_COLD_EXTRUSION)
  93. bool Temperature::allow_cold_extrude = false;
  94. int16_t Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
  95. #endif
  96. // private:
  97. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  98. uint16_t Temperature::redundant_temperature_raw = 0;
  99. float Temperature::redundant_temperature = 0.0;
  100. #endif
  101. volatile bool Temperature::temp_meas_ready = false;
  102. #if ENABLED(PIDTEMP)
  103. float Temperature::temp_iState[HOTENDS] = { 0 },
  104. Temperature::temp_dState[HOTENDS] = { 0 },
  105. Temperature::pTerm[HOTENDS],
  106. Temperature::iTerm[HOTENDS],
  107. Temperature::dTerm[HOTENDS];
  108. #if ENABLED(PID_EXTRUSION_SCALING)
  109. float Temperature::cTerm[HOTENDS];
  110. long Temperature::last_e_position;
  111. long Temperature::lpq[LPQ_MAX_LEN];
  112. int Temperature::lpq_ptr = 0;
  113. #endif
  114. float Temperature::pid_error[HOTENDS];
  115. bool Temperature::pid_reset[HOTENDS];
  116. #endif
  117. #if ENABLED(PIDTEMPBED)
  118. float Temperature::temp_iState_bed = { 0 },
  119. Temperature::temp_dState_bed = { 0 },
  120. Temperature::pTerm_bed,
  121. Temperature::iTerm_bed,
  122. Temperature::dTerm_bed,
  123. Temperature::pid_error_bed;
  124. #else
  125. millis_t Temperature::next_bed_check_ms;
  126. #endif
  127. uint16_t Temperature::raw_temp_value[MAX_EXTRUDERS] = { 0 },
  128. Temperature::raw_temp_bed_value = 0;
  129. // Init min and max temp with extreme values to prevent false errors during startup
  130. int16_t Temperature::minttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP, HEATER_4_RAW_LO_TEMP),
  131. Temperature::maxttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP, HEATER_4_RAW_HI_TEMP),
  132. Temperature::minttemp[HOTENDS] = { 0 },
  133. Temperature::maxttemp[HOTENDS] = ARRAY_BY_HOTENDS1(16383);
  134. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  135. uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
  136. #endif
  137. #ifdef MILLISECONDS_PREHEAT_TIME
  138. millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
  139. #endif
  140. #ifdef BED_MINTEMP
  141. int16_t Temperature::bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  142. #endif
  143. #ifdef BED_MAXTEMP
  144. int16_t Temperature::bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  145. #endif
  146. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  147. int8_t Temperature::meas_shift_index; // Index of a delayed sample in buffer
  148. #endif
  149. #if HAS_AUTO_FAN
  150. millis_t Temperature::next_auto_fan_check_ms = 0;
  151. #endif
  152. uint8_t Temperature::soft_pwm_amount[HOTENDS],
  153. Temperature::soft_pwm_amount_bed;
  154. #if ENABLED(FAN_SOFT_PWM)
  155. uint8_t Temperature::soft_pwm_amount_fan[FAN_COUNT],
  156. Temperature::soft_pwm_count_fan[FAN_COUNT];
  157. #endif
  158. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  159. uint16_t Temperature::current_raw_filwidth = 0; // Measured filament diameter - one extruder only
  160. #endif
  161. #if ENABLED(PROBING_HEATERS_OFF)
  162. bool Temperature::paused;
  163. #endif
  164. #if HEATER_IDLE_HANDLER
  165. millis_t Temperature::heater_idle_timeout_ms[HOTENDS] = { 0 };
  166. bool Temperature::heater_idle_timeout_exceeded[HOTENDS] = { false };
  167. #if HAS_TEMP_BED
  168. millis_t Temperature::bed_idle_timeout_ms = 0;
  169. bool Temperature::bed_idle_timeout_exceeded = false;
  170. #endif
  171. #endif
  172. #if ENABLED(ADC_KEYPAD)
  173. uint32_t Temperature::current_ADCKey_raw = 0;
  174. uint8_t Temperature::ADCKey_count = 0;
  175. #endif
  176. #if HAS_PID_HEATING
  177. void Temperature::PID_autotune(float temp, int hotend, int ncycles, bool set_result/*=false*/) {
  178. float input = 0.0;
  179. int cycles = 0;
  180. bool heating = true;
  181. millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
  182. long t_high = 0, t_low = 0;
  183. long bias, d;
  184. float Ku, Tu;
  185. float workKp = 0, workKi = 0, workKd = 0;
  186. float max = 0, min = 10000;
  187. #if HAS_AUTO_FAN
  188. next_auto_fan_check_ms = temp_ms + 2500UL;
  189. #endif
  190. if (hotend >=
  191. #if ENABLED(PIDTEMP)
  192. HOTENDS
  193. #else
  194. 0
  195. #endif
  196. || hotend <
  197. #if ENABLED(PIDTEMPBED)
  198. -1
  199. #else
  200. 0
  201. #endif
  202. ) {
  203. SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
  204. return;
  205. }
  206. SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
  207. disable_all_heaters(); // switch off all heaters.
  208. #if HAS_PID_FOR_BOTH
  209. if (hotend < 0)
  210. soft_pwm_amount_bed = bias = d = (MAX_BED_POWER) >> 1;
  211. else
  212. soft_pwm_amount[hotend] = bias = d = (PID_MAX) >> 1;
  213. #elif ENABLED(PIDTEMP)
  214. soft_pwm_amount[hotend] = bias = d = (PID_MAX) >> 1;
  215. #else
  216. soft_pwm_amount_bed = bias = d = (MAX_BED_POWER) >> 1;
  217. #endif
  218. wait_for_heatup = true;
  219. // PID Tuning loop
  220. while (wait_for_heatup) {
  221. millis_t ms = millis();
  222. if (temp_meas_ready) { // temp sample ready
  223. updateTemperaturesFromRawValues();
  224. input =
  225. #if HAS_PID_FOR_BOTH
  226. hotend < 0 ? current_temperature_bed : current_temperature[hotend]
  227. #elif ENABLED(PIDTEMP)
  228. current_temperature[hotend]
  229. #else
  230. current_temperature_bed
  231. #endif
  232. ;
  233. NOLESS(max, input);
  234. NOMORE(min, input);
  235. #if HAS_AUTO_FAN
  236. if (ELAPSED(ms, next_auto_fan_check_ms)) {
  237. checkExtruderAutoFans();
  238. next_auto_fan_check_ms = ms + 2500UL;
  239. }
  240. #endif
  241. if (heating && input > temp) {
  242. if (ELAPSED(ms, t2 + 5000UL)) {
  243. heating = false;
  244. #if HAS_PID_FOR_BOTH
  245. if (hotend < 0)
  246. soft_pwm_amount_bed = (bias - d) >> 1;
  247. else
  248. soft_pwm_amount[hotend] = (bias - d) >> 1;
  249. #elif ENABLED(PIDTEMP)
  250. soft_pwm_amount[hotend] = (bias - d) >> 1;
  251. #elif ENABLED(PIDTEMPBED)
  252. soft_pwm_amount_bed = (bias - d) >> 1;
  253. #endif
  254. t1 = ms;
  255. t_high = t1 - t2;
  256. max = temp;
  257. }
  258. }
  259. if (!heating && input < temp) {
  260. if (ELAPSED(ms, t1 + 5000UL)) {
  261. heating = true;
  262. t2 = ms;
  263. t_low = t2 - t1;
  264. if (cycles > 0) {
  265. long max_pow =
  266. #if HAS_PID_FOR_BOTH
  267. hotend < 0 ? MAX_BED_POWER : PID_MAX
  268. #elif ENABLED(PIDTEMP)
  269. PID_MAX
  270. #else
  271. MAX_BED_POWER
  272. #endif
  273. ;
  274. bias += (d * (t_high - t_low)) / (t_low + t_high);
  275. bias = constrain(bias, 20, max_pow - 20);
  276. d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
  277. SERIAL_PROTOCOLPAIR(MSG_BIAS, bias);
  278. SERIAL_PROTOCOLPAIR(MSG_D, d);
  279. SERIAL_PROTOCOLPAIR(MSG_T_MIN, min);
  280. SERIAL_PROTOCOLPAIR(MSG_T_MAX, max);
  281. if (cycles > 2) {
  282. Ku = (4.0 * d) / (M_PI * (max - min) * 0.5);
  283. Tu = ((float)(t_low + t_high) * 0.001);
  284. SERIAL_PROTOCOLPAIR(MSG_KU, Ku);
  285. SERIAL_PROTOCOLPAIR(MSG_TU, Tu);
  286. workKp = 0.6 * Ku;
  287. workKi = 2 * workKp / Tu;
  288. workKd = workKp * Tu * 0.125;
  289. SERIAL_PROTOCOLLNPGM("\n" MSG_CLASSIC_PID);
  290. SERIAL_PROTOCOLPAIR(MSG_KP, workKp);
  291. SERIAL_PROTOCOLPAIR(MSG_KI, workKi);
  292. SERIAL_PROTOCOLLNPAIR(MSG_KD, workKd);
  293. /**
  294. workKp = 0.33*Ku;
  295. workKi = workKp/Tu;
  296. workKd = workKp*Tu/3;
  297. SERIAL_PROTOCOLLNPGM(" Some overshoot");
  298. SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
  299. SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
  300. SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
  301. workKp = 0.2*Ku;
  302. workKi = 2*workKp/Tu;
  303. workKd = workKp*Tu/3;
  304. SERIAL_PROTOCOLLNPGM(" No overshoot");
  305. SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
  306. SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
  307. SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
  308. */
  309. }
  310. }
  311. #if HAS_PID_FOR_BOTH
  312. if (hotend < 0)
  313. soft_pwm_amount_bed = (bias + d) >> 1;
  314. else
  315. soft_pwm_amount[hotend] = (bias + d) >> 1;
  316. #elif ENABLED(PIDTEMP)
  317. soft_pwm_amount[hotend] = (bias + d) >> 1;
  318. #else
  319. soft_pwm_amount_bed = (bias + d) >> 1;
  320. #endif
  321. cycles++;
  322. min = temp;
  323. }
  324. }
  325. }
  326. #define MAX_OVERSHOOT_PID_AUTOTUNE 20
  327. if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
  328. SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
  329. return;
  330. }
  331. // Every 2 seconds...
  332. if (ELAPSED(ms, temp_ms + 2000UL)) {
  333. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  334. print_heaterstates();
  335. SERIAL_EOL();
  336. #endif
  337. temp_ms = ms;
  338. } // every 2 seconds
  339. // Over 2 minutes?
  340. if (((ms - t1) + (ms - t2)) > (10L * 60L * 1000L * 2L)) {
  341. SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
  342. return;
  343. }
  344. if (cycles > ncycles) {
  345. SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
  346. #if HAS_PID_FOR_BOTH
  347. const char* estring = hotend < 0 ? "bed" : "";
  348. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kp ", workKp); SERIAL_EOL();
  349. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Ki ", workKi); SERIAL_EOL();
  350. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kd ", workKd); SERIAL_EOL();
  351. #elif ENABLED(PIDTEMP)
  352. SERIAL_PROTOCOLPAIR("#define DEFAULT_Kp ", workKp); SERIAL_EOL();
  353. SERIAL_PROTOCOLPAIR("#define DEFAULT_Ki ", workKi); SERIAL_EOL();
  354. SERIAL_PROTOCOLPAIR("#define DEFAULT_Kd ", workKd); SERIAL_EOL();
  355. #else
  356. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKp ", workKp); SERIAL_EOL();
  357. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKi ", workKi); SERIAL_EOL();
  358. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKd ", workKd); SERIAL_EOL();
  359. #endif
  360. #define _SET_BED_PID() do { \
  361. bedKp = workKp; \
  362. bedKi = scalePID_i(workKi); \
  363. bedKd = scalePID_d(workKd); \
  364. updatePID(); }while(0)
  365. #define _SET_EXTRUDER_PID() do { \
  366. PID_PARAM(Kp, hotend) = workKp; \
  367. PID_PARAM(Ki, hotend) = scalePID_i(workKi); \
  368. PID_PARAM(Kd, hotend) = scalePID_d(workKd); \
  369. updatePID(); }while(0)
  370. // Use the result? (As with "M303 U1")
  371. if (set_result) {
  372. #if HAS_PID_FOR_BOTH
  373. if (hotend < 0)
  374. _SET_BED_PID();
  375. else
  376. _SET_EXTRUDER_PID();
  377. #elif ENABLED(PIDTEMP)
  378. _SET_EXTRUDER_PID();
  379. #else
  380. _SET_BED_PID();
  381. #endif
  382. }
  383. return;
  384. }
  385. lcd_update();
  386. }
  387. if (!wait_for_heatup) disable_all_heaters();
  388. }
  389. #endif // HAS_PID_HEATING
  390. /**
  391. * Class and Instance Methods
  392. */
  393. Temperature::Temperature() { }
  394. void Temperature::updatePID() {
  395. #if ENABLED(PIDTEMP)
  396. #if ENABLED(PID_EXTRUSION_SCALING)
  397. last_e_position = 0;
  398. #endif
  399. #endif
  400. }
  401. int Temperature::getHeaterPower(int heater) {
  402. return heater < 0 ? soft_pwm_amount_bed : soft_pwm_amount[heater];
  403. }
  404. #if HAS_AUTO_FAN
  405. void Temperature::checkExtruderAutoFans() {
  406. static const int8_t fanPin[] PROGMEM = { E0_AUTO_FAN_PIN, E1_AUTO_FAN_PIN, E2_AUTO_FAN_PIN, E3_AUTO_FAN_PIN, E4_AUTO_FAN_PIN };
  407. static const uint8_t fanBit[] PROGMEM = {
  408. 0,
  409. AUTO_1_IS_0 ? 0 : 1,
  410. AUTO_2_IS_0 ? 0 : AUTO_2_IS_1 ? 1 : 2,
  411. AUTO_3_IS_0 ? 0 : AUTO_3_IS_1 ? 1 : AUTO_3_IS_2 ? 2 : 3,
  412. AUTO_4_IS_0 ? 0 : AUTO_4_IS_1 ? 1 : AUTO_4_IS_2 ? 2 : AUTO_4_IS_3 ? 3 : 4
  413. };
  414. uint8_t fanState = 0;
  415. HOTEND_LOOP()
  416. if (current_temperature[e] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  417. SBI(fanState, pgm_read_byte(&fanBit[e]));
  418. uint8_t fanDone = 0;
  419. for (uint8_t f = 0; f < COUNT(fanPin); f++) {
  420. int8_t pin = pgm_read_byte(&fanPin[f]);
  421. const uint8_t bit = pgm_read_byte(&fanBit[f]);
  422. if (pin >= 0 && !TEST(fanDone, bit)) {
  423. uint8_t newFanSpeed = TEST(fanState, bit) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  424. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  425. digitalWrite(pin, newFanSpeed);
  426. analogWrite(pin, newFanSpeed);
  427. SBI(fanDone, bit);
  428. }
  429. }
  430. }
  431. #endif // HAS_AUTO_FAN
  432. //
  433. // Temperature Error Handlers
  434. //
  435. void Temperature::_temp_error(const int8_t e, const char * const serial_msg, const char * const lcd_msg)
  436. {
  437. static bool killed = false;
  438. if (IsRunning())
  439. {
  440. SERIAL_ERROR_START();
  441. serialprintPGM(serial_msg);
  442. SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
  443. if (e >= 0)
  444. {
  445. SERIAL_ERRORLN((int)e);
  446. }
  447. else
  448. {
  449. SERIAL_ERRORLNPGM(MSG_HEATER_BED);
  450. }
  451. }
  452. #if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE)
  453. if (!killed)
  454. {
  455. // Generate error temperature, close firmware.
  456. Running = false;
  457. killed = true;
  458. // Diabale lcd message display
  459. kill(lcd_msg);
  460. }
  461. else
  462. {
  463. // paranoia prohibits all heating.
  464. disable_all_heaters();
  465. }
  466. #endif
  467. }
  468. void Temperature::max_temp_error(const int8_t e)
  469. {
  470. #if HAS_TEMP_BED
  471. _temp_error(e, PSTR(MSG_T_MAXTEMP), e >= 0 ? PSTR(MSG_ERR_MAXTEMP) : PSTR(MSG_ERR_MAXTEMP_BED));
  472. #else
  473. _temp_error(HOTEND_INDEX, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
  474. #if HOTENDS == 1
  475. UNUSED(e);
  476. #endif
  477. #endif
  478. }
  479. void Temperature::min_temp_error(const int8_t e)
  480. {
  481. #if HAS_TEMP_BED
  482. _temp_error(e, PSTR(MSG_T_MINTEMP), e >= 0 ? PSTR(MSG_ERR_MINTEMP) : PSTR(MSG_ERR_MINTEMP_BED));
  483. #else
  484. _temp_error(HOTEND_INDEX, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
  485. #if HOTENDS == 1
  486. UNUSED(e);
  487. #endif
  488. #endif
  489. }
  490. float Temperature::get_pid_output(const int8_t e) {
  491. #if HOTENDS == 1
  492. UNUSED(e);
  493. #define _HOTEND_TEST true
  494. #else
  495. #define _HOTEND_TEST e == active_extruder
  496. #endif
  497. float pid_output;
  498. #if ENABLED(PIDTEMP)
  499. #if DISABLED(PID_OPENLOOP)
  500. pid_error[HOTEND_INDEX] = target_temperature[HOTEND_INDEX] - current_temperature[HOTEND_INDEX];
  501. dTerm[HOTEND_INDEX] = K2 * PID_PARAM(Kd, HOTEND_INDEX) * (current_temperature[HOTEND_INDEX] - temp_dState[HOTEND_INDEX]) + K1 * dTerm[HOTEND_INDEX];
  502. temp_dState[HOTEND_INDEX] = current_temperature[HOTEND_INDEX];
  503. #if HEATER_IDLE_HANDLER
  504. if (heater_idle_timeout_exceeded[HOTEND_INDEX]) {
  505. pid_output = 0;
  506. pid_reset[HOTEND_INDEX] = true;
  507. }
  508. else
  509. #endif
  510. if (pid_error[HOTEND_INDEX] > PID_FUNCTIONAL_RANGE) {
  511. pid_output = BANG_MAX;
  512. pid_reset[HOTEND_INDEX] = true;
  513. }
  514. else if (pid_error[HOTEND_INDEX] < -(PID_FUNCTIONAL_RANGE) || target_temperature[HOTEND_INDEX] == 0
  515. #if HEATER_IDLE_HANDLER
  516. || heater_idle_timeout_exceeded[HOTEND_INDEX]
  517. #endif
  518. ) {
  519. pid_output = 0;
  520. pid_reset[HOTEND_INDEX] = true;
  521. }
  522. else {
  523. if (pid_reset[HOTEND_INDEX]) {
  524. temp_iState[HOTEND_INDEX] = 0.0;
  525. pid_reset[HOTEND_INDEX] = false;
  526. }
  527. pTerm[HOTEND_INDEX] = PID_PARAM(Kp, HOTEND_INDEX) * pid_error[HOTEND_INDEX];
  528. temp_iState[HOTEND_INDEX] += pid_error[HOTEND_INDEX];
  529. iTerm[HOTEND_INDEX] = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX];
  530. pid_output = pTerm[HOTEND_INDEX] + iTerm[HOTEND_INDEX] - dTerm[HOTEND_INDEX];
  531. #if ENABLED(PID_EXTRUSION_SCALING)
  532. cTerm[HOTEND_INDEX] = 0;
  533. if (_HOTEND_TEST) {
  534. long e_position = stepper.position(E_AXIS);
  535. if (e_position > last_e_position) {
  536. lpq[lpq_ptr] = e_position - last_e_position;
  537. last_e_position = e_position;
  538. }
  539. else {
  540. lpq[lpq_ptr] = 0;
  541. }
  542. if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
  543. cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
  544. pid_output += cTerm[HOTEND_INDEX];
  545. }
  546. #endif // PID_EXTRUSION_SCALING
  547. if (pid_output > PID_MAX) {
  548. if (pid_error[HOTEND_INDEX] > 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
  549. pid_output = PID_MAX;
  550. }
  551. else if (pid_output < 0) {
  552. if (pid_error[HOTEND_INDEX] < 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
  553. pid_output = 0;
  554. }
  555. }
  556. #else
  557. pid_output = constrain(target_temperature[HOTEND_INDEX], 0, PID_MAX);
  558. #endif // PID_OPENLOOP
  559. #if ENABLED(PID_DEBUG)
  560. SERIAL_ECHO_START();
  561. SERIAL_ECHOPAIR(MSG_PID_DEBUG, HOTEND_INDEX);
  562. SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[HOTEND_INDEX]);
  563. SERIAL_ECHOPAIR(MSG_PID_DEBUG_OUTPUT, pid_output);
  564. SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[HOTEND_INDEX]);
  565. SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[HOTEND_INDEX]);
  566. SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[HOTEND_INDEX]);
  567. #if ENABLED(PID_EXTRUSION_SCALING)
  568. SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[HOTEND_INDEX]);
  569. #endif
  570. SERIAL_EOL();
  571. #endif // PID_DEBUG
  572. #else /* PID off */
  573. #if HEATER_IDLE_HANDLER
  574. if (heater_idle_timeout_exceeded[HOTEND_INDEX])
  575. pid_output = 0;
  576. else
  577. #endif
  578. pid_output = (current_temperature[HOTEND_INDEX] < target_temperature[HOTEND_INDEX]) ? PID_MAX : 0;
  579. #endif
  580. return pid_output;
  581. }
  582. #if ENABLED(PIDTEMPBED)
  583. float Temperature::get_pid_output_bed() {
  584. float pid_output;
  585. #if DISABLED(PID_OPENLOOP)
  586. pid_error_bed = target_temperature_bed - current_temperature_bed;
  587. pTerm_bed = bedKp * pid_error_bed;
  588. temp_iState_bed += pid_error_bed;
  589. iTerm_bed = bedKi * temp_iState_bed;
  590. dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
  591. temp_dState_bed = current_temperature_bed;
  592. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  593. if (pid_output > MAX_BED_POWER) {
  594. if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  595. pid_output = MAX_BED_POWER;
  596. }
  597. else if (pid_output < 0) {
  598. if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  599. pid_output = 0;
  600. }
  601. #else
  602. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  603. #endif // PID_OPENLOOP
  604. #if ENABLED(PID_BED_DEBUG)
  605. SERIAL_ECHO_START();
  606. SERIAL_ECHOPGM(" PID_BED_DEBUG ");
  607. SERIAL_ECHOPGM(": Input ");
  608. SERIAL_ECHO(current_temperature_bed);
  609. SERIAL_ECHOPGM(" Output ");
  610. SERIAL_ECHO(pid_output);
  611. SERIAL_ECHOPGM(" pTerm ");
  612. SERIAL_ECHO(pTerm_bed);
  613. SERIAL_ECHOPGM(" iTerm ");
  614. SERIAL_ECHO(iTerm_bed);
  615. SERIAL_ECHOPGM(" dTerm ");
  616. SERIAL_ECHOLN(dTerm_bed);
  617. #endif // PID_BED_DEBUG
  618. return pid_output;
  619. }
  620. #endif // PIDTEMPBED
  621. /**
  622. * Manage heating activities for extruder hot-ends and a heated bed
  623. * - Acquire updated temperature readings
  624. * - Also resets the watchdog timer
  625. * - Invoke thermal runaway protection
  626. * - Manage extruder auto-fan
  627. * - Apply filament width to the extrusion rate (may move)
  628. * - Update the heated bed PID output value
  629. */
  630. /**
  631. * The following line SOMETIMES results in the dreaded "unable to find a register to spill in class 'POINTER_REGS'"
  632. * compile error.
  633. * thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  634. *
  635. * This is due to a bug in the C++ compiler used by the Arduino IDE from 1.6.10 to at least 1.8.1.
  636. *
  637. * The work around is to add the compiler flag "__attribute__((__optimize__("O2")))" to the declaration for manage_heater()
  638. */
  639. //void Temperature::manage_heater() __attribute__((__optimize__("O2")));
  640. void Temperature::manage_heater() {
  641. if (!temp_meas_ready) return;
  642. updateTemperaturesFromRawValues(); // also resets the watchdog
  643. #if ENABLED(HEATER_0_USES_MAX6675)
  644. if (current_temperature[0] > min(HEATER_0_MAXTEMP, MAX6675_TMAX - 1.0)) max_temp_error(0);
  645. if (current_temperature[0] < max(HEATER_0_MINTEMP, MAX6675_TMIN + .01)) min_temp_error(0);
  646. #endif
  647. #if WATCH_HOTENDS || WATCH_THE_BED || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN || HEATER_IDLE_HANDLER
  648. millis_t ms = millis();
  649. #endif
  650. HOTEND_LOOP() {
  651. #if HEATER_IDLE_HANDLER
  652. if (!heater_idle_timeout_exceeded[e] && heater_idle_timeout_ms[e] && ELAPSED(ms, heater_idle_timeout_ms[e]))
  653. heater_idle_timeout_exceeded[e] = true;
  654. #endif
  655. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  656. // Check for thermal runaway
  657. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  658. #endif
  659. soft_pwm_amount[e] = (current_temperature[e] > minttemp[e] || is_preheating(e)) && current_temperature[e] < maxttemp[e] ? (int)get_pid_output(e) >> 1 : 0;
  660. #if WATCH_HOTENDS
  661. // Make sure temperature is increasing
  662. if (watch_heater_next_ms[e] && ELAPSED(ms, watch_heater_next_ms[e])) { // Time to check this extruder?
  663. if (degHotend(e) < watch_target_temp[e]) // Failed to increase enough?
  664. _temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  665. else // Start again if the target is still far off
  666. start_watching_heater(e);
  667. }
  668. #endif
  669. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  670. // Make sure measured temperatures are close together
  671. if (FABS(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF)
  672. _temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
  673. #endif
  674. } // HOTEND_LOOP
  675. #if HAS_AUTO_FAN
  676. if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
  677. checkExtruderAutoFans();
  678. next_auto_fan_check_ms = ms + 2500UL;
  679. }
  680. #endif
  681. // Control the extruder rate based on the width sensor
  682. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  683. if (filament_sensor) {
  684. meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
  685. if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
  686. meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
  687. // Get the delayed info and add 100 to reconstitute to a percent of
  688. // the nominal filament diameter then square it to get an area
  689. const float vmroot = measurement_delay[meas_shift_index] * 0.01 + 1.0;
  690. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vmroot <= 0.1 ? 0.01 : sq(vmroot);
  691. }
  692. #endif // FILAMENT_WIDTH_SENSOR
  693. #if WATCH_THE_BED
  694. // Make sure temperature is increasing
  695. if (watch_bed_next_ms && ELAPSED(ms, watch_bed_next_ms)) { // Time to check the bed?
  696. if (degBed() < watch_target_bed_temp) // Failed to increase enough?
  697. _temp_error(-1, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  698. else // Start again if the target is still far off
  699. start_watching_bed();
  700. }
  701. #endif // WATCH_THE_BED
  702. #if DISABLED(PIDTEMPBED)
  703. if (PENDING(ms, next_bed_check_ms)) return;
  704. next_bed_check_ms = ms + BED_CHECK_INTERVAL;
  705. #endif
  706. #if HAS_TEMP_BED
  707. #if HEATER_IDLE_HANDLER
  708. if (!bed_idle_timeout_exceeded && bed_idle_timeout_ms && ELAPSED(ms, bed_idle_timeout_ms))
  709. bed_idle_timeout_exceeded = true;
  710. #endif
  711. #if HAS_THERMALLY_PROTECTED_BED
  712. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
  713. #endif
  714. #if HEATER_IDLE_HANDLER
  715. if (bed_idle_timeout_exceeded)
  716. {
  717. soft_pwm_amount_bed = 0;
  718. #if DISABLED(PIDTEMPBED)
  719. WRITE_HEATER_BED(LOW);
  720. #endif
  721. }
  722. else
  723. #endif
  724. {
  725. #if ENABLED(PIDTEMPBED)
  726. soft_pwm_amount_bed = WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0;
  727. #elif ENABLED(BED_LIMIT_SWITCHING)
  728. // Check if temperature is within the correct band
  729. if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
  730. if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
  731. soft_pwm_amount_bed = 0;
  732. else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS))
  733. soft_pwm_amount_bed = MAX_BED_POWER >> 1;
  734. }
  735. else {
  736. soft_pwm_amount_bed = 0;
  737. WRITE_HEATER_BED(LOW);
  738. }
  739. #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
  740. // Check if temperature is within the correct range
  741. if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
  742. soft_pwm_amount_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
  743. }
  744. else {
  745. soft_pwm_amount_bed = 0;
  746. WRITE_HEATER_BED(LOW);
  747. }
  748. #endif
  749. }
  750. #endif // HAS_TEMP_BED
  751. }
  752. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  753. // Derived from RepRap FiveD extruder::getTemperature()
  754. // For hot end temperature measurement.
  755. float Temperature::analog2temp(int raw, uint8_t e) {
  756. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  757. if (e > HOTENDS)
  758. #else
  759. if (e >= HOTENDS)
  760. #endif
  761. {
  762. SERIAL_ERROR_START();
  763. SERIAL_ERROR((int)e);
  764. SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
  765. kill(PSTR(MSG_KILLED));
  766. return 0.0;
  767. }
  768. #if ENABLED(HEATER_0_USES_MAX6675)
  769. if (e == 0) return 0.25 * raw;
  770. #endif
  771. if (heater_ttbl_map[e] != NULL) {
  772. float celsius = 0;
  773. uint8_t i;
  774. short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]);
  775. for (i = 1; i < heater_ttbllen_map[e]; i++) {
  776. if (PGM_RD_W((*tt)[i][0]) > raw) {
  777. celsius = PGM_RD_W((*tt)[i - 1][1]) +
  778. (raw - PGM_RD_W((*tt)[i - 1][0])) *
  779. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i - 1][1])) /
  780. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i - 1][0]));
  781. break;
  782. }
  783. }
  784. // Overflow: Set to last value in the table
  785. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i - 1][1]);
  786. return celsius;
  787. }
  788. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
  789. }
  790. // Derived from RepRap FiveD extruder::getTemperature()
  791. // For bed temperature measurement.
  792. float Temperature::analog2tempBed(const int raw) {
  793. #if ENABLED(BED_USES_THERMISTOR)
  794. float celsius = 0;
  795. byte i;
  796. for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
  797. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
  798. celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]) +
  799. (raw - PGM_RD_W(BEDTEMPTABLE[i - 1][0])) *
  800. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i - 1][1])) /
  801. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i - 1][0]));
  802. break;
  803. }
  804. }
  805. // Overflow: Set to last value in the table
  806. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]);
  807. return celsius;
  808. #elif defined(BED_USES_AD595)
  809. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
  810. #else
  811. UNUSED(raw);
  812. return 0;
  813. #endif
  814. }
  815. /**
  816. * Get the raw values into the actual temperatures.
  817. * The raw values are created in interrupt context,
  818. * and this function is called from normal context
  819. * as it would block the stepper routine.
  820. */
  821. void Temperature::updateTemperaturesFromRawValues() {
  822. #if ENABLED(HEATER_0_USES_MAX6675)
  823. current_temperature_raw[0] = read_max6675();
  824. #endif
  825. HOTEND_LOOP()
  826. current_temperature[e] = Temperature::analog2temp(current_temperature_raw[e], e);
  827. current_temperature_bed = Temperature::analog2tempBed(current_temperature_bed_raw);
  828. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  829. redundant_temperature = Temperature::analog2temp(redundant_temperature_raw, 1);
  830. #endif
  831. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  832. filament_width_meas = analog2widthFil();
  833. #endif
  834. #if ENABLED(USE_WATCHDOG)
  835. // Reset the watchdog after we know we have a temperature measurement.
  836. watchdog_reset();
  837. #endif
  838. CRITICAL_SECTION_START;
  839. temp_meas_ready = false;
  840. CRITICAL_SECTION_END;
  841. }
  842. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  843. // Convert raw Filament Width to millimeters
  844. float Temperature::analog2widthFil() {
  845. return current_raw_filwidth * 5.0 * (1.0 / 16383.0);
  846. //return current_raw_filwidth;
  847. }
  848. // Convert raw Filament Width to a ratio
  849. int Temperature::widthFil_to_size_ratio() {
  850. float temp = filament_width_meas;
  851. if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
  852. else NOMORE(temp, MEASURED_UPPER_LIMIT);
  853. return filament_width_nominal / temp * 100;
  854. }
  855. #endif
  856. #if ENABLED(HEATER_0_USES_MAX6675)
  857. #ifndef MAX6675_SCK_PIN
  858. #define MAX6675_SCK_PIN SCK_PIN
  859. #endif
  860. #ifndef MAX6675_DO_PIN
  861. #define MAX6675_DO_PIN MISO_PIN
  862. #endif
  863. SPI<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
  864. #endif
  865. /**
  866. * Initialize the temperature manager
  867. * The manager is implemented by periodic calls to manage_heater()
  868. */
  869. void Temperature::init() {
  870. #if MB(RUMBA) && (TEMP_SENSOR_0 == -1 || TEMP_SENSOR_1 == -1 || TEMP_SENSOR_2 == -1 || TEMP_SENSOR_BED == -1)
  871. // Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  872. MCUCR = _BV(JTD);
  873. MCUCR = _BV(JTD);
  874. #endif
  875. // Finish init of mult hotend arrays
  876. HOTEND_LOOP() maxttemp[e] = maxttemp[0];
  877. #if ENABLED(PIDTEMP) && ENABLED(PID_EXTRUSION_SCALING)
  878. last_e_position = 0;
  879. #endif
  880. #if HAS_HEATER_0
  881. SET_OUTPUT(HEATER_0_PIN);
  882. #endif
  883. #if HAS_HEATER_1
  884. SET_OUTPUT(HEATER_1_PIN);
  885. #endif
  886. #if HAS_HEATER_2
  887. SET_OUTPUT(HEATER_2_PIN);
  888. #endif
  889. #if HAS_HEATER_3
  890. SET_OUTPUT(HEATER_3_PIN);
  891. #endif
  892. #if HAS_HEATER_4
  893. SET_OUTPUT(HEATER_3_PIN);
  894. #endif
  895. #if HAS_HEATER_BED
  896. SET_OUTPUT(HEATER_BED_PIN);
  897. #endif
  898. #if HAS_FAN0
  899. SET_OUTPUT(FAN_PIN);
  900. #if ENABLED(FAST_PWM_FAN)
  901. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  902. #endif
  903. #endif
  904. #if HAS_FAN1
  905. SET_OUTPUT(FAN1_PIN);
  906. #if ENABLED(FAST_PWM_FAN)
  907. setPwmFrequency(FAN1_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  908. #endif
  909. #endif
  910. #if HAS_FAN2
  911. SET_OUTPUT(FAN2_PIN);
  912. #if ENABLED(FAST_PWM_FAN)
  913. setPwmFrequency(FAN2_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  914. #endif
  915. #endif
  916. #if ENABLED(HEATER_0_USES_MAX6675)
  917. OUT_WRITE(SCK_PIN, LOW);
  918. OUT_WRITE(MOSI_PIN, HIGH);
  919. SET_INPUT_PULLUP(MISO_PIN);
  920. max6675_spi.init();
  921. OUT_WRITE(SS_PIN, HIGH);
  922. OUT_WRITE(MAX6675_SS, HIGH);
  923. #endif // HEATER_0_USES_MAX6675
  924. #ifdef DIDR2
  925. #define ANALOG_SELECT(pin) do{ if (pin < 8) SBI(DIDR0, pin); else SBI(DIDR2, pin - 8); }while(0)
  926. #else
  927. #define ANALOG_SELECT(pin) do{ SBI(DIDR0, pin); }while(0)
  928. #endif
  929. // Set analog inputs
  930. ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07;
  931. DIDR0 = 0;
  932. #ifdef DIDR2
  933. DIDR2 = 0;
  934. #endif
  935. #if HAS_TEMP_0
  936. ANALOG_SELECT(TEMP_0_PIN);
  937. #endif
  938. #if HAS_TEMP_1
  939. ANALOG_SELECT(TEMP_1_PIN);
  940. #endif
  941. #if HAS_TEMP_2
  942. ANALOG_SELECT(TEMP_2_PIN);
  943. #endif
  944. #if HAS_TEMP_3
  945. ANALOG_SELECT(TEMP_3_PIN);
  946. #endif
  947. #if HAS_TEMP_4
  948. ANALOG_SELECT(TEMP_4_PIN);
  949. #endif
  950. #if HAS_TEMP_BED
  951. ANALOG_SELECT(TEMP_BED_PIN);
  952. #endif
  953. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  954. ANALOG_SELECT(FILWIDTH_PIN);
  955. #endif
  956. #if HAS_AUTO_FAN_0
  957. #if E0_AUTO_FAN_PIN == FAN1_PIN
  958. SET_OUTPUT(E0_AUTO_FAN_PIN);
  959. #if ENABLED(FAST_PWM_FAN)
  960. setPwmFrequency(E0_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  961. #endif
  962. #else
  963. SET_OUTPUT(E0_AUTO_FAN_PIN);
  964. #endif
  965. #endif
  966. #if HAS_AUTO_FAN_1 && !AUTO_1_IS_0
  967. #if E1_AUTO_FAN_PIN == FAN1_PIN
  968. SET_OUTPUT(E1_AUTO_FAN_PIN);
  969. #if ENABLED(FAST_PWM_FAN)
  970. setPwmFrequency(E1_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  971. #endif
  972. #else
  973. SET_OUTPUT(E1_AUTO_FAN_PIN);
  974. #endif
  975. #endif
  976. #if HAS_AUTO_FAN_2 && !AUTO_2_IS_0 && !AUTO_2_IS_1
  977. #if E2_AUTO_FAN_PIN == FAN1_PIN
  978. SET_OUTPUT(E2_AUTO_FAN_PIN);
  979. #if ENABLED(FAST_PWM_FAN)
  980. setPwmFrequency(E2_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  981. #endif
  982. #else
  983. SET_OUTPUT(E2_AUTO_FAN_PIN);
  984. #endif
  985. #endif
  986. #if HAS_AUTO_FAN_3 && !AUTO_3_IS_0 && !AUTO_3_IS_1 && !AUTO_3_IS_2
  987. #if E3_AUTO_FAN_PIN == FAN1_PIN
  988. SET_OUTPUT(E3_AUTO_FAN_PIN);
  989. #if ENABLED(FAST_PWM_FAN)
  990. setPwmFrequency(E3_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  991. #endif
  992. #else
  993. SET_OUTPUT(E3_AUTO_FAN_PIN);
  994. #endif
  995. #endif
  996. #if HAS_AUTO_FAN_4 && !AUTO_4_IS_0 && !AUTO_4_IS_1 && !AUTO_4_IS_2 && !AUTO_4_IS_3
  997. #if E4_AUTO_FAN_PIN == FAN1_PIN
  998. SET_OUTPUT(E4_AUTO_FAN_PIN);
  999. #if ENABLED(FAST_PWM_FAN)
  1000. setPwmFrequency(E4_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  1001. #endif
  1002. #else
  1003. SET_OUTPUT(E4_AUTO_FAN_PIN);
  1004. #endif
  1005. #endif
  1006. // Use timer0 for temperature measurement
  1007. // Interleave temperature interrupt with millies interrupt
  1008. OCR0B = 128;
  1009. SBI(TIMSK0, OCIE0B);
  1010. // Wait for temperature measurement to settle
  1011. delay(250);
  1012. #define TEMP_MIN_ROUTINE(NR) \
  1013. minttemp[NR] = HEATER_ ##NR## _MINTEMP; \
  1014. while (analog2temp(minttemp_raw[NR], NR) < HEATER_ ##NR## _MINTEMP) { \
  1015. if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
  1016. minttemp_raw[NR] += OVERSAMPLENR; \
  1017. else \
  1018. minttemp_raw[NR] -= OVERSAMPLENR; \
  1019. }
  1020. #define TEMP_MAX_ROUTINE(NR) \
  1021. maxttemp[NR] = HEATER_ ##NR## _MAXTEMP; \
  1022. while (analog2temp(maxttemp_raw[NR], NR) > HEATER_ ##NR## _MAXTEMP) { \
  1023. if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
  1024. maxttemp_raw[NR] -= OVERSAMPLENR; \
  1025. else \
  1026. maxttemp_raw[NR] += OVERSAMPLENR; \
  1027. }
  1028. #ifdef HEATER_0_MINTEMP
  1029. TEMP_MIN_ROUTINE(0);
  1030. #endif
  1031. #ifdef HEATER_0_MAXTEMP
  1032. TEMP_MAX_ROUTINE(0);
  1033. #endif
  1034. #if HOTENDS > 1
  1035. #ifdef HEATER_1_MINTEMP
  1036. TEMP_MIN_ROUTINE(1);
  1037. #endif
  1038. #ifdef HEATER_1_MAXTEMP
  1039. TEMP_MAX_ROUTINE(1);
  1040. #endif
  1041. #if HOTENDS > 2
  1042. #ifdef HEATER_2_MINTEMP
  1043. TEMP_MIN_ROUTINE(2);
  1044. #endif
  1045. #ifdef HEATER_2_MAXTEMP
  1046. TEMP_MAX_ROUTINE(2);
  1047. #endif
  1048. #if HOTENDS > 3
  1049. #ifdef HEATER_3_MINTEMP
  1050. TEMP_MIN_ROUTINE(3);
  1051. #endif
  1052. #ifdef HEATER_3_MAXTEMP
  1053. TEMP_MAX_ROUTINE(3);
  1054. #endif
  1055. #if HOTENDS > 4
  1056. #ifdef HEATER_4_MINTEMP
  1057. TEMP_MIN_ROUTINE(4);
  1058. #endif
  1059. #ifdef HEATER_4_MAXTEMP
  1060. TEMP_MAX_ROUTINE(4);
  1061. #endif
  1062. #endif // HOTENDS > 4
  1063. #endif // HOTENDS > 3
  1064. #endif // HOTENDS > 2
  1065. #endif // HOTENDS > 1
  1066. #ifdef BED_MINTEMP
  1067. while (analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1068. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1069. bed_minttemp_raw += OVERSAMPLENR;
  1070. #else
  1071. bed_minttemp_raw -= OVERSAMPLENR;
  1072. #endif
  1073. }
  1074. #endif // BED_MINTEMP
  1075. #ifdef BED_MAXTEMP
  1076. while (analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1077. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1078. bed_maxttemp_raw -= OVERSAMPLENR;
  1079. #else
  1080. bed_maxttemp_raw += OVERSAMPLENR;
  1081. #endif
  1082. }
  1083. #endif // BED_MAXTEMP
  1084. #if ENABLED(PROBING_HEATERS_OFF)
  1085. paused = false;
  1086. #endif
  1087. }
  1088. #if WATCH_HOTENDS
  1089. /**
  1090. * Start Heating Sanity Check for hotends that are below
  1091. * their target temperature by a configurable margin.
  1092. * This is called when the temperature is set. (M104, M109)
  1093. */
  1094. void Temperature::start_watching_heater(uint8_t e) {
  1095. #if HOTENDS == 1
  1096. UNUSED(e);
  1097. #endif
  1098. if (degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
  1099. watch_target_temp[HOTEND_INDEX] = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE;
  1100. watch_heater_next_ms[HOTEND_INDEX] = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
  1101. }
  1102. else
  1103. watch_heater_next_ms[HOTEND_INDEX] = 0;
  1104. }
  1105. #endif
  1106. #if WATCH_THE_BED
  1107. /**
  1108. * Start Heating Sanity Check for hotends that are below
  1109. * their target temperature by a configurable margin.
  1110. * This is called when the temperature is set. (M140, M190)
  1111. */
  1112. void Temperature::start_watching_bed() {
  1113. if (degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) {
  1114. watch_target_bed_temp = degBed() + WATCH_BED_TEMP_INCREASE;
  1115. watch_bed_next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL;
  1116. }
  1117. else
  1118. watch_bed_next_ms = 0;
  1119. }
  1120. #endif
  1121. #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
  1122. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  1123. Temperature::TRState Temperature::thermal_runaway_state_machine[HOTENDS] = { TRInactive };
  1124. millis_t Temperature::thermal_runaway_timer[HOTENDS] = { 0 };
  1125. #endif
  1126. #if HAS_THERMALLY_PROTECTED_BED
  1127. Temperature::TRState Temperature::thermal_runaway_bed_state_machine = TRInactive;
  1128. millis_t Temperature::thermal_runaway_bed_timer;
  1129. #endif
  1130. void Temperature::thermal_runaway_protection(Temperature::TRState* state, millis_t* timer, float current, float target, int heater_id, int period_seconds, int hysteresis_degc) {
  1131. static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
  1132. /**
  1133. SERIAL_ECHO_START();
  1134. SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
  1135. if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
  1136. SERIAL_ECHOPAIR(" ; State:", *state);
  1137. SERIAL_ECHOPAIR(" ; Timer:", *timer);
  1138. SERIAL_ECHOPAIR(" ; Temperature:", current);
  1139. SERIAL_ECHOPAIR(" ; Target Temp:", target);
  1140. if (heater_id >= 0)
  1141. SERIAL_ECHOPAIR(" ; Idle Timeout:", heater_idle_timeout_exceeded[heater_id]);
  1142. else
  1143. SERIAL_ECHOPAIR(" ; Idle Timeout:", bed_idle_timeout_exceeded);
  1144. SERIAL_EOL();
  1145. */
  1146. const int heater_index = heater_id >= 0 ? heater_id : HOTENDS;
  1147. #if HEATER_IDLE_HANDLER
  1148. // If the heater idle timeout expires, restart
  1149. if (heater_id >= 0 && heater_idle_timeout_exceeded[heater_id]) {
  1150. *state = TRInactive;
  1151. tr_target_temperature[heater_index] = 0;
  1152. }
  1153. #if HAS_TEMP_BED
  1154. else if (heater_id < 0 && bed_idle_timeout_exceeded) {
  1155. *state = TRInactive;
  1156. tr_target_temperature[heater_index] = 0;
  1157. }
  1158. #endif
  1159. else
  1160. #endif
  1161. // If the target temperature changes, restart
  1162. if (tr_target_temperature[heater_index] != target) {
  1163. tr_target_temperature[heater_index] = target;
  1164. *state = target > 0 ? TRFirstHeating : TRInactive;
  1165. }
  1166. switch (*state) {
  1167. // Inactive state waits for a target temperature to be set
  1168. case TRInactive: break;
  1169. // When first heating, wait for the temperature to be reached then go to Stable state
  1170. case TRFirstHeating:
  1171. if (current < tr_target_temperature[heater_index]) break;
  1172. *state = TRStable;
  1173. // While the temperature is stable watch for a bad temperature
  1174. case TRStable:
  1175. if (current >= tr_target_temperature[heater_index] - hysteresis_degc) {
  1176. *timer = millis() + period_seconds * 1000UL;
  1177. break;
  1178. }
  1179. else if (PENDING(millis(), *timer)) break;
  1180. *state = TRRunaway;
  1181. case TRRunaway:
  1182. _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
  1183. }
  1184. }
  1185. #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
  1186. void Temperature::disable_all_heaters() {
  1187. #if ENABLED(AUTOTEMP)
  1188. planner.autotemp_enabled = false;
  1189. #endif
  1190. HOTEND_LOOP() setTargetHotend(0, e);
  1191. setTargetBed(0);
  1192. // Unpause and reset everything
  1193. #if ENABLED(PROBING_HEATERS_OFF)
  1194. pause(false);
  1195. #endif
  1196. // If all heaters go down then for sure our print job has stopped
  1197. print_job_timer.stop();
  1198. #define DISABLE_HEATER(NR) { \
  1199. setTargetHotend(0, NR); \
  1200. soft_pwm_amount[NR] = 0; \
  1201. WRITE_HEATER_ ##NR (LOW); \
  1202. }
  1203. #if HAS_TEMP_HOTEND
  1204. DISABLE_HEATER(0);
  1205. #if HOTENDS > 1
  1206. DISABLE_HEATER(1);
  1207. #if HOTENDS > 2
  1208. DISABLE_HEATER(2);
  1209. #if HOTENDS > 3
  1210. DISABLE_HEATER(3);
  1211. #if HOTENDS > 4
  1212. DISABLE_HEATER(4);
  1213. #endif // HOTENDS > 4
  1214. #endif // HOTENDS > 3
  1215. #endif // HOTENDS > 2
  1216. #endif // HOTENDS > 1
  1217. #endif
  1218. #if HAS_TEMP_BED
  1219. target_temperature_bed = 0;
  1220. soft_pwm_amount_bed = 0;
  1221. #if HAS_HEATER_BED
  1222. WRITE_HEATER_BED(LOW);
  1223. #endif
  1224. #endif
  1225. }
  1226. #if ENABLED(PROBING_HEATERS_OFF)
  1227. void Temperature::pause(const bool p) {
  1228. if (p != paused) {
  1229. paused = p;
  1230. if (p) {
  1231. HOTEND_LOOP() start_heater_idle_timer(e, 0); // timeout immediately
  1232. #if HAS_TEMP_BED
  1233. start_bed_idle_timer(0); // timeout immediately
  1234. #endif
  1235. }
  1236. else {
  1237. HOTEND_LOOP() reset_heater_idle_timer(e);
  1238. #if HAS_TEMP_BED
  1239. reset_bed_idle_timer();
  1240. #endif
  1241. }
  1242. }
  1243. }
  1244. #endif // PROBING_HEATERS_OFF
  1245. #if ENABLED(HEATER_0_USES_MAX6675)
  1246. #define MAX6675_HEAT_INTERVAL 250u
  1247. #if ENABLED(MAX6675_IS_MAX31855)
  1248. uint32_t max6675_temp = 2000;
  1249. #define MAX6675_ERROR_MASK 7
  1250. #define MAX6675_DISCARD_BITS 18
  1251. #define MAX6675_SPEED_BITS (_BV(SPR1)) // clock ÷ 64
  1252. #else
  1253. uint16_t max6675_temp = 2000;
  1254. #define MAX6675_ERROR_MASK 4
  1255. #define MAX6675_DISCARD_BITS 3
  1256. #define MAX6675_SPEED_BITS (_BV(SPR0)) // clock ÷ 16
  1257. #endif
  1258. int Temperature::read_max6675() {
  1259. static millis_t next_max6675_ms = 0;
  1260. millis_t ms = millis();
  1261. if (PENDING(ms, next_max6675_ms)) return (int)max6675_temp;
  1262. next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
  1263. CBI(
  1264. #ifdef PRR
  1265. PRR
  1266. #elif defined(PRR0)
  1267. PRR0
  1268. #endif
  1269. , PRSPI);
  1270. SPCR = _BV(MSTR) | _BV(SPE) | MAX6675_SPEED_BITS;
  1271. WRITE(MAX6675_SS, 0); // enable TT_MAX6675
  1272. // ensure 100ns delay - a bit extra is fine
  1273. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1274. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1275. // Read a big-endian temperature value
  1276. max6675_temp = 0;
  1277. for (uint8_t i = sizeof(max6675_temp); i--;) {
  1278. max6675_temp |= max6675_spi.receive();
  1279. if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
  1280. }
  1281. WRITE(MAX6675_SS, 1); // disable TT_MAX6675
  1282. if (max6675_temp & MAX6675_ERROR_MASK) {
  1283. SERIAL_ERROR_START();
  1284. SERIAL_ERRORPGM("Temp measurement error! ");
  1285. #if MAX6675_ERROR_MASK == 7
  1286. SERIAL_ERRORPGM("MAX31855 ");
  1287. if (max6675_temp & 1)
  1288. SERIAL_ERRORLNPGM("Open Circuit");
  1289. else if (max6675_temp & 2)
  1290. SERIAL_ERRORLNPGM("Short to GND");
  1291. else if (max6675_temp & 4)
  1292. SERIAL_ERRORLNPGM("Short to VCC");
  1293. #else
  1294. SERIAL_ERRORLNPGM("MAX6675");
  1295. #endif
  1296. max6675_temp = MAX6675_TMAX * 4; // thermocouple open
  1297. }
  1298. else
  1299. max6675_temp >>= MAX6675_DISCARD_BITS;
  1300. #if ENABLED(MAX6675_IS_MAX31855)
  1301. // Support negative temperature
  1302. if (max6675_temp & 0x00002000) max6675_temp |= 0xFFFFC000;
  1303. #endif
  1304. return (int)max6675_temp;
  1305. }
  1306. #endif // HEATER_0_USES_MAX6675
  1307. /**
  1308. * Get raw temperatures
  1309. */
  1310. void Temperature::set_current_temp_raw() {
  1311. #if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675)
  1312. current_temperature_raw[0] = raw_temp_value[0];
  1313. #endif
  1314. #if HAS_TEMP_1
  1315. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  1316. redundant_temperature_raw = raw_temp_value[1];
  1317. #else
  1318. current_temperature_raw[1] = raw_temp_value[1];
  1319. #endif
  1320. #if HAS_TEMP_2
  1321. current_temperature_raw[2] = raw_temp_value[2];
  1322. #if HAS_TEMP_3
  1323. current_temperature_raw[3] = raw_temp_value[3];
  1324. #if HAS_TEMP_4
  1325. current_temperature_raw[4] = raw_temp_value[4];
  1326. #endif
  1327. #endif
  1328. #endif
  1329. #endif
  1330. current_temperature_bed_raw = raw_temp_bed_value;
  1331. temp_meas_ready = true;
  1332. }
  1333. #if ENABLED(PINS_DEBUGGING)
  1334. /**
  1335. * monitors endstops & Z probe for changes
  1336. *
  1337. * If a change is detected then the LED is toggled and
  1338. * a message is sent out the serial port
  1339. *
  1340. * Yes, we could miss a rapid back & forth change but
  1341. * that won't matter because this is all manual.
  1342. *
  1343. */
  1344. void endstop_monitor() {
  1345. static uint16_t old_endstop_bits_local = 0;
  1346. static uint8_t local_LED_status = 0;
  1347. uint16_t current_endstop_bits_local = 0;
  1348. #if HAS_X_MIN
  1349. if (READ(X_MIN_PIN)) SBI(current_endstop_bits_local, X_MIN);
  1350. #endif
  1351. #if HAS_X_MAX
  1352. if (READ(X_MAX_PIN)) SBI(current_endstop_bits_local, X_MAX);
  1353. #endif
  1354. #if HAS_Y_MIN
  1355. if (READ(Y_MIN_PIN)) SBI(current_endstop_bits_local, Y_MIN);
  1356. #endif
  1357. #if HAS_Y_MAX
  1358. if (READ(Y_MAX_PIN)) SBI(current_endstop_bits_local, Y_MAX);
  1359. #endif
  1360. #if HAS_Z_MIN
  1361. if (READ(Z_MIN_PIN)) SBI(current_endstop_bits_local, Z_MIN);
  1362. #endif
  1363. #if HAS_Z_MAX
  1364. if (READ(Z_MAX_PIN)) SBI(current_endstop_bits_local, Z_MAX);
  1365. #endif
  1366. #if HAS_Z_MIN_PROBE_PIN
  1367. if (READ(Z_MIN_PROBE_PIN)) SBI(current_endstop_bits_local, Z_MIN_PROBE);
  1368. #endif
  1369. #if HAS_Z2_MIN
  1370. if (READ(Z2_MIN_PIN)) SBI(current_endstop_bits_local, Z2_MIN);
  1371. #endif
  1372. #if HAS_Z2_MAX
  1373. if (READ(Z2_MAX_PIN)) SBI(current_endstop_bits_local, Z2_MAX);
  1374. #endif
  1375. uint16_t endstop_change = current_endstop_bits_local ^ old_endstop_bits_local;
  1376. if (endstop_change) {
  1377. #if HAS_X_MIN
  1378. if (TEST(endstop_change, X_MIN)) SERIAL_PROTOCOLPAIR(" X_MIN:", !!TEST(current_endstop_bits_local, X_MIN));
  1379. #endif
  1380. #if HAS_X_MAX
  1381. if (TEST(endstop_change, X_MAX)) SERIAL_PROTOCOLPAIR(" X_MAX:", !!TEST(current_endstop_bits_local, X_MAX));
  1382. #endif
  1383. #if HAS_Y_MIN
  1384. if (TEST(endstop_change, Y_MIN)) SERIAL_PROTOCOLPAIR(" Y_MIN:", !!TEST(current_endstop_bits_local, Y_MIN));
  1385. #endif
  1386. #if HAS_Y_MAX
  1387. if (TEST(endstop_change, Y_MAX)) SERIAL_PROTOCOLPAIR(" Y_MAX:", !!TEST(current_endstop_bits_local, Y_MAX));
  1388. #endif
  1389. #if HAS_Z_MIN
  1390. if (TEST(endstop_change, Z_MIN)) SERIAL_PROTOCOLPAIR(" Z_MIN:", !!TEST(current_endstop_bits_local, Z_MIN));
  1391. #endif
  1392. #if HAS_Z_MAX
  1393. if (TEST(endstop_change, Z_MAX)) SERIAL_PROTOCOLPAIR(" Z_MAX:", !!TEST(current_endstop_bits_local, Z_MAX));
  1394. #endif
  1395. #if HAS_Z_MIN_PROBE_PIN
  1396. if (TEST(endstop_change, Z_MIN_PROBE)) SERIAL_PROTOCOLPAIR(" PROBE:", !!TEST(current_endstop_bits_local, Z_MIN_PROBE));
  1397. #endif
  1398. #if HAS_Z2_MIN
  1399. if (TEST(endstop_change, Z2_MIN)) SERIAL_PROTOCOLPAIR(" Z2_MIN:", !!TEST(current_endstop_bits_local, Z2_MIN));
  1400. #endif
  1401. #if HAS_Z2_MAX
  1402. if (TEST(endstop_change, Z2_MAX)) SERIAL_PROTOCOLPAIR(" Z2_MAX:", !!TEST(current_endstop_bits_local, Z2_MAX));
  1403. #endif
  1404. SERIAL_PROTOCOLPGM("\n\n");
  1405. analogWrite(LED_PIN, local_LED_status);
  1406. local_LED_status ^= 255;
  1407. old_endstop_bits_local = current_endstop_bits_local;
  1408. }
  1409. }
  1410. #endif // PINS_DEBUGGING
  1411. /**
  1412. * Timer 0 is shared with millies so don't change the prescaler.
  1413. *
  1414. * This ISR uses the compare method so it runs at the base
  1415. * frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
  1416. * in OCR0B above (128 or halfway between OVFs).
  1417. *
  1418. * - Manage PWM to all the heaters and fan
  1419. * - Prepare or Measure one of the raw ADC sensor values
  1420. * - Check new temperature values for MIN/MAX errors (kill on error)
  1421. * - Step the babysteps value for each axis towards 0
  1422. * - For PINS_DEBUGGING, monitor and report endstop pins
  1423. * - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
  1424. */
  1425. ISR(TIMER0_COMPB_vect) { Temperature::isr(); }
  1426. volatile bool Temperature::in_temp_isr = false;
  1427. void Temperature::isr() {
  1428. // The stepper ISR can interrupt this ISR. When it does it re-enables this ISR
  1429. // at the end of its run, potentially causing re-entry. This flag prevents it.
  1430. if (in_temp_isr) return;
  1431. in_temp_isr = true;
  1432. // Allow UART and stepper ISRs
  1433. CBI(TIMSK0, OCIE0B); //Disable Temperature ISR
  1434. sei();
  1435. static int8_t temp_count = -1;
  1436. static ADCSensorState adc_sensor_state = StartupDelay;
  1437. static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
  1438. // avoid multiple loads of pwm_count
  1439. uint8_t pwm_count_tmp = pwm_count;
  1440. #if ENABLED(ADC_KEYPAD)
  1441. static unsigned int raw_ADCKey_value = 0;
  1442. #endif
  1443. // Static members for each heater
  1444. #if ENABLED(SLOW_PWM_HEATERS)
  1445. static uint8_t slow_pwm_count = 0;
  1446. #define ISR_STATICS(n) \
  1447. static uint8_t soft_pwm_count_ ## n, \
  1448. state_heater_ ## n = 0, \
  1449. state_timer_heater_ ## n = 0
  1450. #else
  1451. #define ISR_STATICS(n) static uint8_t soft_pwm_count_ ## n = 0
  1452. #endif
  1453. // Statics per heater
  1454. ISR_STATICS(0);
  1455. #if HOTENDS > 1
  1456. ISR_STATICS(1);
  1457. #if HOTENDS > 2
  1458. ISR_STATICS(2);
  1459. #if HOTENDS > 3
  1460. ISR_STATICS(3);
  1461. #if HOTENDS > 4
  1462. ISR_STATICS(4);
  1463. #endif // HOTENDS > 4
  1464. #endif // HOTENDS > 3
  1465. #endif // HOTENDS > 2
  1466. #endif // HOTENDS > 1
  1467. #if HAS_HEATER_BED
  1468. ISR_STATICS(BED);
  1469. #endif
  1470. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1471. static unsigned long raw_filwidth_value = 0;
  1472. #endif
  1473. #if DISABLED(SLOW_PWM_HEATERS)
  1474. constexpr uint8_t pwm_mask =
  1475. #if ENABLED(SOFT_PWM_DITHER)
  1476. _BV(SOFT_PWM_SCALE) - 1
  1477. #else
  1478. 0
  1479. #endif
  1480. ;
  1481. /**
  1482. * Standard PWM modulation
  1483. */
  1484. if (pwm_count_tmp >= 127) {
  1485. pwm_count_tmp -= 127;
  1486. soft_pwm_count_0 = (soft_pwm_count_0 & pwm_mask) + soft_pwm_amount[0];
  1487. WRITE_HEATER_0(soft_pwm_count_0 > pwm_mask ? HIGH : LOW);
  1488. #if HOTENDS > 1
  1489. soft_pwm_count_1 = (soft_pwm_count_1 & pwm_mask) + soft_pwm_amount[1];
  1490. WRITE_HEATER_1(soft_pwm_count_1 > pwm_mask ? HIGH : LOW);
  1491. #if HOTENDS > 2
  1492. soft_pwm_count_2 = (soft_pwm_count_2 & pwm_mask) + soft_pwm_amount[2];
  1493. WRITE_HEATER_2(soft_pwm_count_2 > pwm_mask ? HIGH : LOW);
  1494. #if HOTENDS > 3
  1495. soft_pwm_count_3 = (soft_pwm_count_3 & pwm_mask) + soft_pwm_amount[3];
  1496. WRITE_HEATER_3(soft_pwm_count_3 > pwm_mask ? HIGH : LOW);
  1497. #if HOTENDS > 4
  1498. soft_pwm_count_4 = (soft_pwm_count_4 & pwm_mask) + soft_pwm_amount[4];
  1499. WRITE_HEATER_4(soft_pwm_count_4 > pwm_mask ? HIGH : LOW);
  1500. #endif // HOTENDS > 4
  1501. #endif // HOTENDS > 3
  1502. #endif // HOTENDS > 2
  1503. #endif // HOTENDS > 1
  1504. #if HAS_HEATER_BED
  1505. soft_pwm_count_BED = (soft_pwm_count_BED & pwm_mask) + soft_pwm_amount_bed;
  1506. WRITE_HEATER_BED(soft_pwm_count_BED > pwm_mask ? HIGH : LOW);
  1507. #endif
  1508. #if ENABLED(FAN_SOFT_PWM)
  1509. #if HAS_FAN0
  1510. soft_pwm_count_fan[0] = (soft_pwm_count_fan[0] & pwm_mask) + soft_pwm_amount_fan[0] >> 1;
  1511. WRITE_FAN(soft_pwm_count_fan[0] > pwm_mask ? HIGH : LOW);
  1512. #endif
  1513. #if HAS_FAN1
  1514. soft_pwm_count_fan[1] = (soft_pwm_count_fan[1] & pwm_mask) + soft_pwm_amount_fan[1] >> 1;
  1515. WRITE_FAN1(soft_pwm_count_fan[1] > pwm_mask ? HIGH : LOW);
  1516. #endif
  1517. #if HAS_FAN2
  1518. soft_pwm_count_fan[2] = (soft_pwm_count_fan[2] & pwm_mask) + soft_pwm_amount_fan[2] >> 1;
  1519. WRITE_FAN2(soft_pwm_count_fan[2] > pwm_mask ? HIGH : LOW);
  1520. #endif
  1521. #endif
  1522. }
  1523. else {
  1524. if (soft_pwm_count_0 <= pwm_count_tmp) WRITE_HEATER_0(LOW);
  1525. #if HOTENDS > 1
  1526. if (soft_pwm_count_1 <= pwm_count_tmp) WRITE_HEATER_1(LOW);
  1527. #if HOTENDS > 2
  1528. if (soft_pwm_count_2 <= pwm_count_tmp) WRITE_HEATER_2(LOW);
  1529. #if HOTENDS > 3
  1530. if (soft_pwm_count_3 <= pwm_count_tmp) WRITE_HEATER_3(LOW);
  1531. #if HOTENDS > 4
  1532. if (soft_pwm_count_4 <= pwm_count_tmp) WRITE_HEATER_4(LOW);
  1533. #endif // HOTENDS > 4
  1534. #endif // HOTENDS > 3
  1535. #endif // HOTENDS > 2
  1536. #endif // HOTENDS > 1
  1537. #if HAS_HEATER_BED
  1538. if (soft_pwm_count_BED <= pwm_count_tmp) WRITE_HEATER_BED(LOW);
  1539. #endif
  1540. #if ENABLED(FAN_SOFT_PWM)
  1541. #if HAS_FAN0
  1542. if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW);
  1543. #endif
  1544. #if HAS_FAN1
  1545. if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW);
  1546. #endif
  1547. #if HAS_FAN2
  1548. if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW);
  1549. #endif
  1550. #endif
  1551. }
  1552. // SOFT_PWM_SCALE to frequency:
  1553. //
  1554. // 0: 16000000/64/256/128 = 7.6294 Hz
  1555. // 1: / 64 = 15.2588 Hz
  1556. // 2: / 32 = 30.5176 Hz
  1557. // 3: / 16 = 61.0352 Hz
  1558. // 4: / 8 = 122.0703 Hz
  1559. // 5: / 4 = 244.1406 Hz
  1560. pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
  1561. #else // SLOW_PWM_HEATERS
  1562. /**
  1563. * SLOW PWM HEATERS
  1564. *
  1565. * For relay-driven heaters
  1566. */
  1567. #ifndef MIN_STATE_TIME
  1568. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1569. #endif
  1570. // Macros for Slow PWM timer logic
  1571. #define _SLOW_PWM_ROUTINE(NR, src) \
  1572. soft_pwm_ ##NR = src; \
  1573. if (soft_pwm_ ##NR > 0) { \
  1574. if (state_timer_heater_ ##NR == 0) { \
  1575. if (state_heater_ ##NR == 0) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1576. state_heater_ ##NR = 1; \
  1577. WRITE_HEATER_ ##NR(1); \
  1578. } \
  1579. } \
  1580. else { \
  1581. if (state_timer_heater_ ##NR == 0) { \
  1582. if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1583. state_heater_ ##NR = 0; \
  1584. WRITE_HEATER_ ##NR(0); \
  1585. } \
  1586. }
  1587. #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm_amount[n])
  1588. #define PWM_OFF_ROUTINE(NR) \
  1589. if (soft_pwm_ ##NR < slow_pwm_count) { \
  1590. if (state_timer_heater_ ##NR == 0) { \
  1591. if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1592. state_heater_ ##NR = 0; \
  1593. WRITE_HEATER_ ##NR (0); \
  1594. } \
  1595. }
  1596. if (slow_pwm_count == 0) {
  1597. SLOW_PWM_ROUTINE(0);
  1598. #if HOTENDS > 1
  1599. SLOW_PWM_ROUTINE(1);
  1600. #if HOTENDS > 2
  1601. SLOW_PWM_ROUTINE(2);
  1602. #if HOTENDS > 3
  1603. SLOW_PWM_ROUTINE(3);
  1604. #if HOTENDS > 4
  1605. SLOW_PWM_ROUTINE(4);
  1606. #endif // HOTENDS > 4
  1607. #endif // HOTENDS > 3
  1608. #endif // HOTENDS > 2
  1609. #endif // HOTENDS > 1
  1610. #if HAS_HEATER_BED
  1611. _SLOW_PWM_ROUTINE(BED, soft_pwm_amount_bed); // BED
  1612. #endif
  1613. } // slow_pwm_count == 0
  1614. PWM_OFF_ROUTINE(0);
  1615. #if HOTENDS > 1
  1616. PWM_OFF_ROUTINE(1);
  1617. #if HOTENDS > 2
  1618. PWM_OFF_ROUTINE(2);
  1619. #if HOTENDS > 3
  1620. PWM_OFF_ROUTINE(3);
  1621. #if HOTENDS > 4
  1622. PWM_OFF_ROUTINE(4);
  1623. #endif // HOTENDS > 4
  1624. #endif // HOTENDS > 3
  1625. #endif // HOTENDS > 2
  1626. #endif // HOTENDS > 1
  1627. #if HAS_HEATER_BED
  1628. PWM_OFF_ROUTINE(BED); // BED
  1629. #endif
  1630. #if ENABLED(FAN_SOFT_PWM)
  1631. if (pwm_count_tmp >= 127) {
  1632. pwm_count_tmp = 0;
  1633. #if HAS_FAN0
  1634. soft_pwm_count_fan[0] = soft_pwm_amount_fan[0] >> 1;
  1635. WRITE_FAN(soft_pwm_count_fan[0] > 0 ? HIGH : LOW);
  1636. #endif
  1637. #if HAS_FAN1
  1638. soft_pwm_count_fan[1] = soft_pwm_amount_fan[1] >> 1;
  1639. WRITE_FAN1(soft_pwm_count_fan[1] > 0 ? HIGH : LOW);
  1640. #endif
  1641. #if HAS_FAN2
  1642. soft_pwm_count_fan[2] = soft_pwm_amount_fan[2] >> 1;
  1643. WRITE_FAN2(soft_pwm_count_fan[2] > 0 ? HIGH : LOW);
  1644. #endif
  1645. }
  1646. #if HAS_FAN0
  1647. if (soft_pwm_count_fan[0] <= pwm_count_tmp) WRITE_FAN(LOW);
  1648. #endif
  1649. #if HAS_FAN1
  1650. if (soft_pwm_count_fan[1] <= pwm_count_tmp) WRITE_FAN1(LOW);
  1651. #endif
  1652. #if HAS_FAN2
  1653. if (soft_pwm_count_fan[2] <= pwm_count_tmp) WRITE_FAN2(LOW);
  1654. #endif
  1655. #endif // FAN_SOFT_PWM
  1656. // SOFT_PWM_SCALE to frequency:
  1657. //
  1658. // 0: 16000000/64/256/128 = 7.6294 Hz
  1659. // 1: / 64 = 15.2588 Hz
  1660. // 2: / 32 = 30.5176 Hz
  1661. // 3: / 16 = 61.0352 Hz
  1662. // 4: / 8 = 122.0703 Hz
  1663. // 5: / 4 = 244.1406 Hz
  1664. pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
  1665. // increment slow_pwm_count only every 64th pwm_count,
  1666. // i.e. yielding a PWM frequency of 16/128 Hz (8s).
  1667. if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) {
  1668. slow_pwm_count++;
  1669. slow_pwm_count &= 0x7F;
  1670. if (state_timer_heater_0 > 0) state_timer_heater_0--;
  1671. #if HOTENDS > 1
  1672. if (state_timer_heater_1 > 0) state_timer_heater_1--;
  1673. #if HOTENDS > 2
  1674. if (state_timer_heater_2 > 0) state_timer_heater_2--;
  1675. #if HOTENDS > 3
  1676. if (state_timer_heater_3 > 0) state_timer_heater_3--;
  1677. #if HOTENDS > 4
  1678. if (state_timer_heater_4 > 0) state_timer_heater_4--;
  1679. #endif // HOTENDS > 4
  1680. #endif // HOTENDS > 3
  1681. #endif // HOTENDS > 2
  1682. #endif // HOTENDS > 1
  1683. #if HAS_HEATER_BED
  1684. if (state_timer_heater_BED > 0) state_timer_heater_BED--;
  1685. #endif
  1686. } // ((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0
  1687. #endif // SLOW_PWM_HEATERS
  1688. //
  1689. // Update lcd buttons 488 times per second
  1690. //
  1691. static bool do_buttons;
  1692. if ((do_buttons ^= true)) lcd_buttons_update();
  1693. /**
  1694. * One sensor is sampled on every other call of the ISR.
  1695. * Each sensor is read 16 (OVERSAMPLENR) times, taking the average.
  1696. *
  1697. * On each Prepare pass, ADC is started for a sensor pin.
  1698. * On the next pass, the ADC value is read and accumulated.
  1699. *
  1700. * This gives each ADC 0.9765ms to charge up.
  1701. */
  1702. #define SET_ADMUX_ADCSRA(pin) ADMUX = _BV(REFS0) | (pin & 0x07); SBI(ADCSRA, ADSC)
  1703. #ifdef MUX5
  1704. #define START_ADC(pin) if (pin > 7) ADCSRB = _BV(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1705. #else
  1706. #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1707. #endif
  1708. switch (adc_sensor_state) {
  1709. case SensorsReady: {
  1710. // All sensors have been read. Stay in this state for a few
  1711. // ISRs to save on calls to temp update/checking code below.
  1712. constexpr int8_t extra_loops = MIN_ADC_ISR_LOOPS - (int8_t)SensorsReady;
  1713. static uint8_t delay_count = 0;
  1714. if (extra_loops > 0) {
  1715. if (delay_count == 0) delay_count = extra_loops; // Init this delay
  1716. if (--delay_count) // While delaying...
  1717. adc_sensor_state = (ADCSensorState)(int(SensorsReady) - 1); // retain this state (else, next state will be 0)
  1718. break;
  1719. }
  1720. else
  1721. adc_sensor_state = (ADCSensorState)0; // Fall-through to start first sensor now
  1722. }
  1723. #if HAS_TEMP_0
  1724. case PrepareTemp_0:
  1725. START_ADC(TEMP_0_PIN);
  1726. break;
  1727. case MeasureTemp_0:
  1728. raw_temp_value[0] += ADC;
  1729. break;
  1730. #endif
  1731. #if HAS_TEMP_BED
  1732. case PrepareTemp_BED:
  1733. START_ADC(TEMP_BED_PIN);
  1734. break;
  1735. case MeasureTemp_BED:
  1736. raw_temp_bed_value += ADC;
  1737. break;
  1738. #endif
  1739. #if HAS_TEMP_1
  1740. case PrepareTemp_1:
  1741. START_ADC(TEMP_1_PIN);
  1742. break;
  1743. case MeasureTemp_1:
  1744. raw_temp_value[1] += ADC;
  1745. break;
  1746. #endif
  1747. #if HAS_TEMP_2
  1748. case PrepareTemp_2:
  1749. START_ADC(TEMP_2_PIN);
  1750. break;
  1751. case MeasureTemp_2:
  1752. raw_temp_value[2] += ADC;
  1753. break;
  1754. #endif
  1755. #if HAS_TEMP_3
  1756. case PrepareTemp_3:
  1757. START_ADC(TEMP_3_PIN);
  1758. break;
  1759. case MeasureTemp_3:
  1760. raw_temp_value[3] += ADC;
  1761. break;
  1762. #endif
  1763. #if HAS_TEMP_4
  1764. case PrepareTemp_4:
  1765. START_ADC(TEMP_4_PIN);
  1766. break;
  1767. case MeasureTemp_4:
  1768. raw_temp_value[4] += ADC;
  1769. break;
  1770. #endif
  1771. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1772. case Prepare_FILWIDTH:
  1773. START_ADC(FILWIDTH_PIN);
  1774. break;
  1775. case Measure_FILWIDTH:
  1776. if (ADC > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read.
  1777. raw_filwidth_value -= (raw_filwidth_value >> 7); // Subtract 1/128th of the raw_filwidth_value
  1778. raw_filwidth_value += ((unsigned long)ADC << 7); // Add new ADC reading, scaled by 128
  1779. }
  1780. break;
  1781. #endif
  1782. #if ENABLED(ADC_KEYPAD)
  1783. case Prepare_ADC_KEY:
  1784. START_ADC(ADC_KEYPAD_PIN);
  1785. break;
  1786. case Measure_ADC_KEY:
  1787. if (ADCKey_count < 16) {
  1788. raw_ADCKey_value = ADC;
  1789. if (raw_ADCKey_value > 900) {
  1790. //ADC Key release
  1791. ADCKey_count = 0;
  1792. current_ADCKey_raw = 0;
  1793. }
  1794. else {
  1795. current_ADCKey_raw += raw_ADCKey_value;
  1796. ADCKey_count++;
  1797. }
  1798. }
  1799. break;
  1800. #endif // ADC_KEYPAD
  1801. case StartupDelay: break;
  1802. } // switch(adc_sensor_state)
  1803. if (!adc_sensor_state && ++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1804. temp_count = 0;
  1805. // Update the raw values if they've been read. Else we could be updating them during reading.
  1806. if (!temp_meas_ready) set_current_temp_raw();
  1807. // Filament Sensor - can be read any time since IIR filtering is used
  1808. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1809. current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1810. #endif
  1811. ZERO(raw_temp_value);
  1812. raw_temp_bed_value = 0;
  1813. #define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) > (HEATER_##N##_RAW_HI_TEMP) ? -1 : 1)
  1814. int constexpr temp_dir[] = {
  1815. #if ENABLED(HEATER_0_USES_MAX6675)
  1816. 0
  1817. #else
  1818. TEMPDIR(0)
  1819. #endif
  1820. #if HOTENDS > 1
  1821. , TEMPDIR(1)
  1822. #if HOTENDS > 2
  1823. , TEMPDIR(2)
  1824. #if HOTENDS > 3
  1825. , TEMPDIR(3)
  1826. #if HOTENDS > 4
  1827. , TEMPDIR(4)
  1828. #endif // HOTENDS > 4
  1829. #endif // HOTENDS > 3
  1830. #endif // HOTENDS > 2
  1831. #endif // HOTENDS > 1
  1832. };
  1833. for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
  1834. const int16_t tdir = temp_dir[e], rawtemp = current_temperature_raw[e] * tdir;
  1835. if (rawtemp > maxttemp_raw[e] * tdir && target_temperature[e] > 0) max_temp_error(e);
  1836. if (rawtemp < minttemp_raw[e] * tdir && !is_preheating(e) && target_temperature[e] > 0) {
  1837. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1838. if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
  1839. #endif
  1840. min_temp_error(e);
  1841. }
  1842. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1843. else
  1844. consecutive_low_temperature_error[e] = 0;
  1845. #endif
  1846. }
  1847. #if HAS_TEMP_BED
  1848. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1849. #define GEBED <=
  1850. #else
  1851. #define GEBED >=
  1852. #endif
  1853. if (current_temperature_bed_raw GEBED bed_maxttemp_raw && target_temperature_bed > 0) max_temp_error(-1);
  1854. if (bed_minttemp_raw GEBED current_temperature_bed_raw && target_temperature_bed > 0) min_temp_error(-1);
  1855. #endif
  1856. } // temp_count >= OVERSAMPLENR
  1857. // Go to the next state, up to SensorsReady
  1858. adc_sensor_state = (ADCSensorState)((int(adc_sensor_state) + 1) % int(StartupDelay));
  1859. #if ENABLED(BABYSTEPPING)
  1860. LOOP_XYZ(axis) {
  1861. const int curTodo = babystepsTodo[axis]; // get rid of volatile for performance
  1862. if (curTodo) {
  1863. stepper.babystep((AxisEnum)axis, curTodo > 0);
  1864. if (curTodo > 0) babystepsTodo[axis]--;
  1865. else babystepsTodo[axis]++;
  1866. }
  1867. }
  1868. #endif // BABYSTEPPING
  1869. #if ENABLED(PINS_DEBUGGING)
  1870. extern bool endstop_monitor_flag;
  1871. // run the endstop monitor at 15Hz
  1872. static uint8_t endstop_monitor_count = 16; // offset this check from the others
  1873. if (endstop_monitor_flag) {
  1874. endstop_monitor_count += _BV(1); // 15 Hz
  1875. endstop_monitor_count &= 0x7F;
  1876. if (!endstop_monitor_count) endstop_monitor(); // report changes in endstop status
  1877. }
  1878. #endif
  1879. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  1880. extern volatile uint8_t e_hit;
  1881. if (e_hit && ENDSTOPS_ENABLED) {
  1882. endstops.update(); // call endstop update routine
  1883. e_hit--;
  1884. }
  1885. #endif
  1886. cli();
  1887. in_temp_isr = false;
  1888. SBI(TIMSK0, OCIE0B); //re-enable Temperature ISR
  1889. }