ubl.h 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #ifndef UNIFIED_BED_LEVELING_H
  23. #define UNIFIED_BED_LEVELING_H
  24. #include "MarlinConfig.h"
  25. #if ENABLED(AUTO_BED_LEVELING_UBL)
  26. #include "Marlin.h"
  27. #include "planner.h"
  28. #include "math.h"
  29. #include "vector_3.h"
  30. #include "configuration_store.h"
  31. #define UBL_VERSION "1.01"
  32. #define UBL_OK false
  33. #define UBL_ERR true
  34. #define USE_NOZZLE_AS_REFERENCE 0
  35. #define USE_PROBE_AS_REFERENCE 1
  36. typedef struct {
  37. int8_t x_index, y_index;
  38. float distance; // When populated, the distance from the search location
  39. } mesh_index_pair;
  40. // ubl.cpp
  41. void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
  42. void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
  43. bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
  44. // ubl_motion.cpp
  45. void debug_current_and_destination(const char * const title);
  46. // ubl_G29.cpp
  47. enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
  48. // External references
  49. char *ftostr43sign(const float&, char);
  50. bool ubl_lcd_clicked();
  51. void home_all_axes();
  52. extern uint8_t ubl_cnt;
  53. ///////////////////////////////////////////////////////////////////////////////////////////////////////
  54. #if ENABLED(ULTRA_LCD)
  55. extern char lcd_status_message[];
  56. void lcd_quick_feedback();
  57. #endif
  58. #define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
  59. #define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))
  60. typedef struct {
  61. bool active = false;
  62. float z_offset = 0.0;
  63. int8_t storage_slot = -1;
  64. } ubl_state;
  65. class unified_bed_leveling {
  66. private:
  67. static float last_specified_z;
  68. static int g29_verbose_level,
  69. g29_phase_value,
  70. g29_repetition_cnt,
  71. g29_storage_slot,
  72. g29_map_type;
  73. static bool g29_c_flag, g29_x_flag, g29_y_flag;
  74. static float g29_x_pos, g29_y_pos,
  75. g29_card_thickness,
  76. g29_constant;
  77. #if HAS_BED_PROBE
  78. static int g29_grid_size;
  79. #endif
  80. #if ENABLED(UBL_G26_MESH_VALIDATION)
  81. static float g26_extrusion_multiplier,
  82. g26_retraction_multiplier,
  83. g26_nozzle,
  84. g26_filament_diameter,
  85. g26_prime_length,
  86. g26_x_pos, g26_y_pos,
  87. g26_ooze_amount,
  88. g26_layer_height;
  89. static int16_t g26_bed_temp,
  90. g26_hotend_temp,
  91. g26_repeats;
  92. static int8_t g26_prime_flag;
  93. static bool g26_continue_with_closest, g26_keep_heaters_on;
  94. #endif
  95. static float measure_point_with_encoder();
  96. static float measure_business_card_thickness(float);
  97. static bool g29_parameter_parsing();
  98. static void find_mean_mesh_height();
  99. static void shift_mesh_height();
  100. static void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest);
  101. static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
  102. static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
  103. static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
  104. static void g29_what_command();
  105. static void g29_eeprom_dump();
  106. static void g29_compare_current_mesh_to_stored_mesh();
  107. static void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map);
  108. static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
  109. static void smart_fill_mesh();
  110. #if ENABLED(UBL_G26_MESH_VALIDATION)
  111. static bool exit_from_g26();
  112. static bool parse_G26_parameters();
  113. static void G26_line_to_destination(const float &feed_rate);
  114. static mesh_index_pair find_closest_circle_to_print(const float&, const float&);
  115. static bool look_for_lines_to_connect();
  116. static bool turn_on_heaters();
  117. static bool prime_nozzle();
  118. static void retract_filament(const float where[XYZE]);
  119. static void recover_filament(const float where[XYZE]);
  120. static void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
  121. static void move_to(const float&, const float&, const float&, const float&);
  122. inline static void move_to(const float where[XYZE], const float &de) { move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], de); }
  123. #endif
  124. public:
  125. static void echo_name();
  126. static void report_state();
  127. static void save_ubl_active_state_and_disable();
  128. static void restore_ubl_active_state_and_leave();
  129. static void display_map(const int);
  130. static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, uint16_t[16], bool);
  131. static void reset();
  132. static void invalidate();
  133. static void set_all_mesh_points_to_value(float);
  134. static bool sanity_check();
  135. static void G29() _O0; // O0 for no optimization
  136. static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
  137. #if ENABLED(UBL_G26_MESH_VALIDATION)
  138. static void G26();
  139. #endif
  140. static ubl_state state;
  141. static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  142. // 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
  143. // until determinism prevails
  144. constexpr static float _mesh_index_to_xpos[16] PROGMEM = {
  145. UBL_MESH_MIN_X + 0 * (MESH_X_DIST), UBL_MESH_MIN_X + 1 * (MESH_X_DIST),
  146. UBL_MESH_MIN_X + 2 * (MESH_X_DIST), UBL_MESH_MIN_X + 3 * (MESH_X_DIST),
  147. UBL_MESH_MIN_X + 4 * (MESH_X_DIST), UBL_MESH_MIN_X + 5 * (MESH_X_DIST),
  148. UBL_MESH_MIN_X + 6 * (MESH_X_DIST), UBL_MESH_MIN_X + 7 * (MESH_X_DIST),
  149. UBL_MESH_MIN_X + 8 * (MESH_X_DIST), UBL_MESH_MIN_X + 9 * (MESH_X_DIST),
  150. UBL_MESH_MIN_X + 10 * (MESH_X_DIST), UBL_MESH_MIN_X + 11 * (MESH_X_DIST),
  151. UBL_MESH_MIN_X + 12 * (MESH_X_DIST), UBL_MESH_MIN_X + 13 * (MESH_X_DIST),
  152. UBL_MESH_MIN_X + 14 * (MESH_X_DIST), UBL_MESH_MIN_X + 15 * (MESH_X_DIST)
  153. };
  154. constexpr static float _mesh_index_to_ypos[16] PROGMEM = {
  155. UBL_MESH_MIN_Y + 0 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 1 * (MESH_Y_DIST),
  156. UBL_MESH_MIN_Y + 2 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 3 * (MESH_Y_DIST),
  157. UBL_MESH_MIN_Y + 4 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 5 * (MESH_Y_DIST),
  158. UBL_MESH_MIN_Y + 6 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 7 * (MESH_Y_DIST),
  159. UBL_MESH_MIN_Y + 8 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 9 * (MESH_Y_DIST),
  160. UBL_MESH_MIN_Y + 10 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 11 * (MESH_Y_DIST),
  161. UBL_MESH_MIN_Y + 12 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 13 * (MESH_Y_DIST),
  162. UBL_MESH_MIN_Y + 14 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 15 * (MESH_Y_DIST)
  163. };
  164. static bool g26_debug_flag, has_control_of_lcd_panel;
  165. static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
  166. unified_bed_leveling();
  167. FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
  168. static int8_t get_cell_index_x(const float &x) {
  169. const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
  170. return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
  171. } // position. But with this defined this way, it is possible
  172. // to extrapolate off of this point even further out. Probably
  173. // that is OK because something else should be keeping that from
  174. // happening and should not be worried about at this level.
  175. static int8_t get_cell_index_y(const float &y) {
  176. const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
  177. return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
  178. } // position. But with this defined this way, it is possible
  179. // to extrapolate off of this point even further out. Probably
  180. // that is OK because something else should be keeping that from
  181. // happening and should not be worried about at this level.
  182. static int8_t find_closest_x_index(const float &x) {
  183. const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
  184. return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
  185. }
  186. static int8_t find_closest_y_index(const float &y) {
  187. const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
  188. return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
  189. }
  190. /**
  191. * z2 --|
  192. * z0 | |
  193. * | | + (z2-z1)
  194. * z1 | | |
  195. * ---+-------------+--------+-- --|
  196. * a1 a0 a2
  197. * |<---delta_a---------->|
  198. *
  199. * calc_z0 is the basis for all the Mesh Based correction. It is used to
  200. * find the expected Z Height at a position between two known Z-Height locations.
  201. *
  202. * It is fairly expensive with its 4 floating point additions and 2 floating point
  203. * multiplications.
  204. */
  205. FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
  206. return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
  207. }
  208. /**
  209. * z_correction_for_x_on_horizontal_mesh_line is an optimization for
  210. * the case where the printer is making a vertical line that only crosses horizontal mesh lines.
  211. */
  212. inline static float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
  213. if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 2) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
  214. serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1l_i") : PSTR("yi") );
  215. SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
  216. SERIAL_ECHOPAIR(",x1_i=", x1_i);
  217. SERIAL_ECHOPAIR(",yi=", yi);
  218. SERIAL_CHAR(')');
  219. SERIAL_EOL();
  220. return NAN;
  221. }
  222. const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)),
  223. z1 = z_values[x1_i][yi];
  224. return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
  225. }
  226. //
  227. // See comments above for z_correction_for_x_on_horizontal_mesh_line
  228. //
  229. inline static float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
  230. if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 2)) {
  231. serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("yl_i") );
  232. SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ly0=", ly0);
  233. SERIAL_ECHOPAIR(", xi=", xi);
  234. SERIAL_ECHOPAIR(", y1_i=", y1_i);
  235. SERIAL_CHAR(')');
  236. SERIAL_EOL();
  237. return NAN;
  238. }
  239. const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)),
  240. z1 = z_values[xi][y1_i];
  241. return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
  242. }
  243. /**
  244. * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
  245. * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
  246. * Z-Height at both ends. Then it does a linear interpolation of these heights based
  247. * on the Y position within the cell.
  248. */
  249. static float get_z_correction(const float &lx0, const float &ly0) {
  250. const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)),
  251. cy = get_cell_index_y(RAW_Y_POSITION(ly0));
  252. if (!WITHIN(cx, 0, GRID_MAX_POINTS_X - 2) || !WITHIN(cy, 0, GRID_MAX_POINTS_Y - 2)) {
  253. SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0);
  254. SERIAL_ECHOPAIR(", ly0=", ly0);
  255. SERIAL_CHAR(')');
  256. SERIAL_EOL();
  257. #if ENABLED(ULTRA_LCD)
  258. strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
  259. lcd_quick_feedback();
  260. #endif
  261. return NAN; // this used to return state.z_offset
  262. }
  263. const float z1 = calc_z0(RAW_X_POSITION(lx0),
  264. mesh_index_to_xpos(cx), z_values[cx][cy],
  265. mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy]);
  266. const float z2 = calc_z0(RAW_X_POSITION(lx0),
  267. mesh_index_to_xpos(cx), z_values[cx][cy + 1],
  268. mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy + 1]);
  269. float z0 = calc_z0(RAW_Y_POSITION(ly0),
  270. mesh_index_to_ypos(cy), z1,
  271. mesh_index_to_ypos(cy + 1), z2);
  272. #if ENABLED(DEBUG_LEVELING_FEATURE)
  273. if (DEBUGGING(MESH_ADJUST)) {
  274. SERIAL_ECHOPAIR(" raw get_z_correction(", lx0);
  275. SERIAL_CHAR(',');
  276. SERIAL_ECHO(ly0);
  277. SERIAL_ECHOPGM(") = ");
  278. SERIAL_ECHO_F(z0, 6);
  279. }
  280. #endif
  281. #if ENABLED(DEBUG_LEVELING_FEATURE)
  282. if (DEBUGGING(MESH_ADJUST)) {
  283. SERIAL_ECHOPGM(" >>>---> ");
  284. SERIAL_ECHO_F(z0, 6);
  285. SERIAL_EOL();
  286. }
  287. #endif
  288. if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
  289. z0 = 0.0; // in ubl.z_values[][] and propagate through the
  290. // calculations. If our correction is NAN, we throw it out
  291. // because part of the Mesh is undefined and we don't have the
  292. // information we need to complete the height correction.
  293. #if ENABLED(DEBUG_LEVELING_FEATURE)
  294. if (DEBUGGING(MESH_ADJUST)) {
  295. SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", lx0);
  296. SERIAL_CHAR(',');
  297. SERIAL_ECHO(ly0);
  298. SERIAL_CHAR(')');
  299. SERIAL_EOL();
  300. }
  301. #endif
  302. }
  303. return z0; // there used to be a +state.z_offset on this line
  304. }
  305. /**
  306. * This function sets the Z leveling fade factor based on the given Z height,
  307. * only re-calculating when necessary.
  308. *
  309. * Returns 1.0 if planner.z_fade_height is 0.0.
  310. * Returns 0.0 if Z is past the specified 'Fade Height'.
  311. */
  312. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  313. static inline float fade_scaling_factor_for_z(const float &lz) {
  314. if (planner.z_fade_height == 0.0) return 1.0;
  315. static float fade_scaling_factor = 1.0;
  316. const float rz = RAW_Z_POSITION(lz);
  317. if (last_specified_z != rz) {
  318. last_specified_z = rz;
  319. fade_scaling_factor =
  320. rz < planner.z_fade_height
  321. ? 1.0 - (rz * planner.inverse_z_fade_height)
  322. : 0.0;
  323. }
  324. return fade_scaling_factor;
  325. }
  326. #else
  327. FORCE_INLINE static float fade_scaling_factor_for_z(const float &lz) { return 1.0; }
  328. #endif
  329. FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) {
  330. return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : UBL_MESH_MIN_X + i * (MESH_X_DIST);
  331. }
  332. FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) {
  333. return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : UBL_MESH_MIN_Y + i * (MESH_Y_DIST);
  334. }
  335. static bool prepare_segmented_line_to(const float ltarget[XYZE], const float &feedrate);
  336. static void line_to_destination_cartesian(const float &fr, uint8_t e);
  337. }; // class unified_bed_leveling
  338. extern unified_bed_leveling ubl;
  339. #if ENABLED(UBL_G26_MESH_VALIDATION)
  340. FORCE_INLINE void gcode_G26() { ubl.G26(); }
  341. #endif
  342. FORCE_INLINE void gcode_G29() { ubl.G29(); }
  343. #endif // AUTO_BED_LEVELING_UBL
  344. #endif // UNIFIED_BED_LEVELING_H