configuration_store.cpp 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V41"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V41 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM CRC16 (uint16_t)
  45. *
  46. * 106 E_STEPPERS (uint8_t)
  47. * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x8)
  48. * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x8)
  49. * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x8)
  50. * 155 M204 P planner.acceleration (float)
  51. * 159 M204 R planner.retract_acceleration (float)
  52. * 163 M204 T planner.travel_acceleration (float)
  53. * 167 M205 S planner.min_feedrate_mm_s (float)
  54. * 171 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 175 M205 B planner.min_segment_time (ulong)
  56. * 179 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 183 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 187 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 191 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 195 M206 XYZ home_offset (float x3)
  61. * 207 M218 XYZ hotend_offset (float x3 per additional hotend)
  62. *
  63. * Global Leveling:
  64. * 219 z_fade_height (float)
  65. *
  66. * MESH_BED_LEVELING: 43 bytes
  67. * 223 M420 S from mbl.status (bool)
  68. * 224 mbl.z_offset (float)
  69. * 228 GRID_MAX_POINTS_X (uint8_t)
  70. * 229 GRID_MAX_POINTS_Y (uint8_t)
  71. * 230 G29 S3 XYZ z_values[][] (float x9, up to float x81) +288
  72. *
  73. * HAS_BED_PROBE: 4 bytes
  74. * 266 M851 zprobe_zoffset (float)
  75. *
  76. * ABL_PLANAR: 36 bytes
  77. * 270 planner.bed_level_matrix (matrix_3x3 = float x9)
  78. *
  79. * AUTO_BED_LEVELING_BILINEAR: 47 bytes
  80. * 306 GRID_MAX_POINTS_X (uint8_t)
  81. * 307 GRID_MAX_POINTS_Y (uint8_t)
  82. * 308 bilinear_grid_spacing (int x2)
  83. * 312 G29 L F bilinear_start (int x2)
  84. * 316 z_values[][] (float x9, up to float x256) +988
  85. *
  86. * AUTO_BED_LEVELING_UBL: 6 bytes
  87. * 324 G29 A ubl.state.active (bool)
  88. * 325 G29 Z ubl.state.z_offset (float)
  89. * 329 G29 S ubl.state.storage_slot (int8_t)
  90. *
  91. * DELTA: 48 bytes
  92. * 348 M666 XYZ endstop_adj (float x3)
  93. * 360 M665 R delta_radius (float)
  94. * 364 M665 L delta_diagonal_rod (float)
  95. * 368 M665 S delta_segments_per_second (float)
  96. * 372 M665 B delta_calibration_radius (float)
  97. * 376 M665 X delta_tower_angle_trim[A] (float)
  98. * 380 M665 Y delta_tower_angle_trim[B] (float)
  99. * 384 M665 Z delta_tower_angle_trim[C] (float)
  100. *
  101. * Z_DUAL_ENDSTOPS: 48 bytes
  102. * 348 M666 Z z_endstop_adj (float)
  103. * --- dummy data (float x11)
  104. *
  105. * ULTIPANEL: 6 bytes
  106. * 396 M145 S0 H lcd_preheat_hotend_temp (int x2)
  107. * 400 M145 S0 B lcd_preheat_bed_temp (int x2)
  108. * 404 M145 S0 F lcd_preheat_fan_speed (int x2)
  109. *
  110. * PIDTEMP: 66 bytes
  111. * 408 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  112. * 424 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  113. * 440 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  114. * 456 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  115. * 472 M301 E4 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  116. * 488 M301 L lpq_len (int)
  117. *
  118. * PIDTEMPBED: 12 bytes
  119. * 490 M304 PID thermalManager.bedKp, .bedKi, .bedKd (float x3)
  120. *
  121. * DOGLCD: 2 bytes
  122. * 502 M250 C lcd_contrast (uint16_t)
  123. *
  124. * FWRETRACT: 33 bytes
  125. * 504 M209 S autoretract_enabled (bool)
  126. * 505 M207 S retract_length (float)
  127. * 509 M207 F retract_feedrate_mm_s (float)
  128. * 513 M207 Z retract_zlift (float)
  129. * 517 M208 S retract_recover_length (float)
  130. * 521 M208 F retract_recover_feedrate_mm_s (float)
  131. * 525 M207 W swap_retract_length (float)
  132. * 529 M208 W swap_retract_recover_length (float)
  133. * 533 M208 R swap_retract_recover_feedrate_mm_s (float)
  134. *
  135. * Volumetric Extrusion: 21 bytes
  136. * 537 M200 D volumetric_enabled (bool)
  137. * 538 M200 T D filament_size (float x5) (T0..3)
  138. *
  139. * HAVE_TMC2130: 20 bytes
  140. * 558 M906 X Stepper X current (uint16_t)
  141. * 560 M906 Y Stepper Y current (uint16_t)
  142. * 562 M906 Z Stepper Z current (uint16_t)
  143. * 564 M906 X2 Stepper X2 current (uint16_t)
  144. * 566 M906 Y2 Stepper Y2 current (uint16_t)
  145. * 568 M906 Z2 Stepper Z2 current (uint16_t)
  146. * 570 M906 E0 Stepper E0 current (uint16_t)
  147. * 572 M906 E1 Stepper E1 current (uint16_t)
  148. * 574 M906 E2 Stepper E2 current (uint16_t)
  149. * 576 M906 E3 Stepper E3 current (uint16_t)
  150. * 580 M906 E4 Stepper E4 current (uint16_t)
  151. *
  152. * LIN_ADVANCE: 8 bytes
  153. * 584 M900 K extruder_advance_k (float)
  154. * 588 M900 WHD advance_ed_ratio (float)
  155. *
  156. * HAS_MOTOR_CURRENT_PWM:
  157. * 592 M907 X Stepper XY current (uint32_t)
  158. * 596 M907 Z Stepper Z current (uint32_t)
  159. * 600 M907 E Stepper E current (uint32_t)
  160. *
  161. * 604 Minimum end-point
  162. * 1925 (604 + 36 + 9 + 288 + 988) Maximum end-point
  163. *
  164. * ========================================================================
  165. * meshes_begin (between max and min end-point, directly above)
  166. * -- MESHES --
  167. * meshes_end
  168. * -- MAT (Mesh Allocation Table) -- 128 bytes (placeholder size)
  169. * mat_end = E2END (0xFFF)
  170. *
  171. */
  172. #include "configuration_store.h"
  173. MarlinSettings settings;
  174. #include "Marlin.h"
  175. #include "language.h"
  176. #include "endstops.h"
  177. #include "planner.h"
  178. #include "temperature.h"
  179. #include "ultralcd.h"
  180. #include "stepper.h"
  181. #if ENABLED(INCH_MODE_SUPPORT) || (ENABLED(ULTIPANEL) && ENABLED(TEMPERATURE_UNITS_SUPPORT))
  182. #include "gcode.h"
  183. #endif
  184. #if ENABLED(MESH_BED_LEVELING)
  185. #include "mesh_bed_leveling.h"
  186. #endif
  187. #if ENABLED(HAVE_TMC2130)
  188. #include "stepper_indirection.h"
  189. #endif
  190. #if ENABLED(AUTO_BED_LEVELING_UBL)
  191. #include "ubl.h"
  192. #endif
  193. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  194. extern void refresh_bed_level();
  195. #endif
  196. /**
  197. * Post-process after Retrieve or Reset
  198. */
  199. void MarlinSettings::postprocess() {
  200. // steps per s2 needs to be updated to agree with units per s2
  201. planner.reset_acceleration_rates();
  202. // Make sure delta kinematics are updated before refreshing the
  203. // planner position so the stepper counts will be set correctly.
  204. #if ENABLED(DELTA)
  205. recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
  206. #endif
  207. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  208. // and init stepper.count[], planner.position[] with current_position
  209. planner.refresh_positioning();
  210. #if ENABLED(PIDTEMP)
  211. thermalManager.updatePID();
  212. #endif
  213. calculate_volumetric_multipliers();
  214. #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  215. // Software endstops depend on home_offset
  216. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  217. #endif
  218. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  219. set_z_fade_height(planner.z_fade_height);
  220. #endif
  221. #if HAS_BED_PROBE
  222. refresh_zprobe_zoffset();
  223. #endif
  224. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  225. refresh_bed_level();
  226. //set_bed_leveling_enabled(leveling_is_on);
  227. #endif
  228. #if HAS_MOTOR_CURRENT_PWM
  229. stepper.refresh_motor_power();
  230. #endif
  231. }
  232. #if ENABLED(EEPROM_SETTINGS)
  233. #define DUMMY_PID_VALUE 3000.0f
  234. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  235. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  236. #define EEPROM_WRITE(VAR) write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  237. #define EEPROM_READ(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  238. #define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(ERR); eeprom_read_error = true; }while(0)
  239. const char version[4] = EEPROM_VERSION;
  240. bool MarlinSettings::eeprom_error;
  241. #if ENABLED(AUTO_BED_LEVELING_UBL)
  242. int MarlinSettings::meshes_begin;
  243. #endif
  244. void MarlinSettings::write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
  245. if (eeprom_error) return;
  246. while (size--) {
  247. uint8_t * const p = (uint8_t * const)pos;
  248. uint8_t v = *value;
  249. // EEPROM has only ~100,000 write cycles,
  250. // so only write bytes that have changed!
  251. if (v != eeprom_read_byte(p)) {
  252. eeprom_write_byte(p, v);
  253. if (eeprom_read_byte(p) != v) {
  254. SERIAL_ECHO_START();
  255. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  256. eeprom_error = true;
  257. return;
  258. }
  259. }
  260. crc16(crc, &v, 1);
  261. pos++;
  262. value++;
  263. };
  264. }
  265. void MarlinSettings::read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) {
  266. if (eeprom_error) return;
  267. do {
  268. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  269. *value = c;
  270. crc16(crc, &c, 1);
  271. pos++;
  272. value++;
  273. } while (--size);
  274. }
  275. /**
  276. * M500 - Store Configuration
  277. */
  278. bool MarlinSettings::save() {
  279. float dummy = 0.0f;
  280. char ver[4] = "000";
  281. uint16_t working_crc = 0;
  282. EEPROM_START();
  283. eeprom_error = false;
  284. EEPROM_WRITE(ver); // invalidate data first
  285. EEPROM_SKIP(working_crc); // Skip the checksum slot
  286. working_crc = 0; // clear before first "real data"
  287. const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
  288. EEPROM_WRITE(esteppers);
  289. EEPROM_WRITE(planner.axis_steps_per_mm);
  290. EEPROM_WRITE(planner.max_feedrate_mm_s);
  291. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  292. EEPROM_WRITE(planner.acceleration);
  293. EEPROM_WRITE(planner.retract_acceleration);
  294. EEPROM_WRITE(planner.travel_acceleration);
  295. EEPROM_WRITE(planner.min_feedrate_mm_s);
  296. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  297. EEPROM_WRITE(planner.min_segment_time);
  298. EEPROM_WRITE(planner.max_jerk);
  299. #if !HAS_HOME_OFFSET
  300. const float home_offset[XYZ] = { 0 };
  301. #endif
  302. #if ENABLED(DELTA)
  303. dummy = 0.0;
  304. EEPROM_WRITE(dummy);
  305. EEPROM_WRITE(dummy);
  306. dummy = DELTA_HEIGHT + home_offset[Z_AXIS];
  307. EEPROM_WRITE(dummy);
  308. #else
  309. EEPROM_WRITE(home_offset);
  310. #endif
  311. #if HOTENDS > 1
  312. // Skip hotend 0 which must be 0
  313. for (uint8_t e = 1; e < HOTENDS; e++)
  314. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  315. #endif
  316. //
  317. // Global Leveling
  318. //
  319. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  320. const float zfh = planner.z_fade_height;
  321. #else
  322. const float zfh = 10.0;
  323. #endif
  324. EEPROM_WRITE(zfh);
  325. //
  326. // Mesh Bed Leveling
  327. //
  328. #if ENABLED(MESH_BED_LEVELING)
  329. // Compile time test that sizeof(mbl.z_values) is as expected
  330. static_assert(
  331. sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
  332. "MBL Z array is the wrong size."
  333. );
  334. const bool leveling_is_on = TEST(mbl.status, MBL_STATUS_HAS_MESH_BIT);
  335. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  336. EEPROM_WRITE(leveling_is_on);
  337. EEPROM_WRITE(mbl.z_offset);
  338. EEPROM_WRITE(mesh_num_x);
  339. EEPROM_WRITE(mesh_num_y);
  340. EEPROM_WRITE(mbl.z_values);
  341. #else // For disabled MBL write a default mesh
  342. const bool leveling_is_on = false;
  343. dummy = 0.0f;
  344. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  345. EEPROM_WRITE(leveling_is_on);
  346. EEPROM_WRITE(dummy); // z_offset
  347. EEPROM_WRITE(mesh_num_x);
  348. EEPROM_WRITE(mesh_num_y);
  349. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  350. #endif // MESH_BED_LEVELING
  351. #if !HAS_BED_PROBE
  352. const float zprobe_zoffset = 0;
  353. #endif
  354. EEPROM_WRITE(zprobe_zoffset);
  355. //
  356. // Planar Bed Leveling matrix
  357. //
  358. #if ABL_PLANAR
  359. EEPROM_WRITE(planner.bed_level_matrix);
  360. #else
  361. dummy = 0.0;
  362. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  363. #endif
  364. //
  365. // Bilinear Auto Bed Leveling
  366. //
  367. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  368. // Compile time test that sizeof(z_values) is as expected
  369. static_assert(
  370. sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]),
  371. "Bilinear Z array is the wrong size."
  372. );
  373. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  374. EEPROM_WRITE(grid_max_x); // 1 byte
  375. EEPROM_WRITE(grid_max_y); // 1 byte
  376. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  377. EEPROM_WRITE(bilinear_start); // 2 ints
  378. EEPROM_WRITE(z_values); // 9-256 floats
  379. #else
  380. // For disabled Bilinear Grid write an empty 3x3 grid
  381. const uint8_t grid_max_x = 3, grid_max_y = 3;
  382. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  383. dummy = 0.0f;
  384. EEPROM_WRITE(grid_max_x);
  385. EEPROM_WRITE(grid_max_y);
  386. EEPROM_WRITE(bilinear_grid_spacing);
  387. EEPROM_WRITE(bilinear_start);
  388. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  389. #endif // AUTO_BED_LEVELING_BILINEAR
  390. #if ENABLED(AUTO_BED_LEVELING_UBL)
  391. EEPROM_WRITE(ubl.state.active);
  392. EEPROM_WRITE(ubl.state.z_offset);
  393. EEPROM_WRITE(ubl.state.storage_slot);
  394. #else
  395. const bool ubl_active = false;
  396. dummy = 0.0f;
  397. const int8_t storage_slot = -1;
  398. EEPROM_WRITE(ubl_active);
  399. EEPROM_WRITE(dummy);
  400. EEPROM_WRITE(storage_slot);
  401. #endif // AUTO_BED_LEVELING_UBL
  402. // 10 floats for DELTA / Z_DUAL_ENDSTOPS
  403. #if ENABLED(DELTA)
  404. EEPROM_WRITE(endstop_adj); // 3 floats
  405. EEPROM_WRITE(delta_radius); // 1 float
  406. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  407. EEPROM_WRITE(delta_segments_per_second); // 1 float
  408. EEPROM_WRITE(delta_calibration_radius); // 1 float
  409. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  410. dummy = 0.0f;
  411. for (uint8_t q = 2; q--;) EEPROM_WRITE(dummy);
  412. #elif ENABLED(Z_DUAL_ENDSTOPS)
  413. EEPROM_WRITE(z_endstop_adj); // 1 float
  414. dummy = 0.0f;
  415. for (uint8_t q = 11; q--;) EEPROM_WRITE(dummy);
  416. #else
  417. dummy = 0.0f;
  418. for (uint8_t q = 12; q--;) EEPROM_WRITE(dummy);
  419. #endif
  420. #if DISABLED(ULTIPANEL)
  421. constexpr int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  422. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  423. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  424. #endif
  425. EEPROM_WRITE(lcd_preheat_hotend_temp);
  426. EEPROM_WRITE(lcd_preheat_bed_temp);
  427. EEPROM_WRITE(lcd_preheat_fan_speed);
  428. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  429. #if ENABLED(PIDTEMP)
  430. if (e < HOTENDS) {
  431. EEPROM_WRITE(PID_PARAM(Kp, e));
  432. EEPROM_WRITE(PID_PARAM(Ki, e));
  433. EEPROM_WRITE(PID_PARAM(Kd, e));
  434. #if ENABLED(PID_EXTRUSION_SCALING)
  435. EEPROM_WRITE(PID_PARAM(Kc, e));
  436. #else
  437. dummy = 1.0f; // 1.0 = default kc
  438. EEPROM_WRITE(dummy);
  439. #endif
  440. }
  441. else
  442. #endif // !PIDTEMP
  443. {
  444. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  445. EEPROM_WRITE(dummy); // Kp
  446. dummy = 0.0f;
  447. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  448. }
  449. } // Hotends Loop
  450. #if DISABLED(PID_EXTRUSION_SCALING)
  451. int lpq_len = 20;
  452. #endif
  453. EEPROM_WRITE(lpq_len);
  454. #if DISABLED(PIDTEMPBED)
  455. dummy = DUMMY_PID_VALUE;
  456. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  457. #else
  458. EEPROM_WRITE(thermalManager.bedKp);
  459. EEPROM_WRITE(thermalManager.bedKi);
  460. EEPROM_WRITE(thermalManager.bedKd);
  461. #endif
  462. #if !HAS_LCD_CONTRAST
  463. const uint16_t lcd_contrast = 32;
  464. #endif
  465. EEPROM_WRITE(lcd_contrast);
  466. #if DISABLED(FWRETRACT)
  467. const bool autoretract_enabled = false;
  468. const float retract_length = 3,
  469. retract_feedrate_mm_s = 45,
  470. retract_zlift = 0,
  471. retract_recover_length = 0,
  472. retract_recover_feedrate_mm_s = 0,
  473. swap_retract_length = 13,
  474. swap_retract_recover_length = 0,
  475. swap_retract_recover_feedrate_mm_s = 8;
  476. #endif
  477. EEPROM_WRITE(autoretract_enabled);
  478. EEPROM_WRITE(retract_length);
  479. EEPROM_WRITE(retract_feedrate_mm_s);
  480. EEPROM_WRITE(retract_zlift);
  481. EEPROM_WRITE(retract_recover_length);
  482. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  483. EEPROM_WRITE(swap_retract_length);
  484. EEPROM_WRITE(swap_retract_recover_length);
  485. EEPROM_WRITE(swap_retract_recover_feedrate_mm_s);
  486. EEPROM_WRITE(volumetric_enabled);
  487. // Save filament sizes
  488. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++)
  489. {
  490. if (q < COUNT(filament_size)) dummy = filament_size[q];
  491. EEPROM_WRITE(dummy);
  492. }
  493. // Save TMC2130 Configuration, and placeholder values
  494. uint16_t val;
  495. #if ENABLED(HAVE_TMC2130)
  496. #if ENABLED(X_IS_TMC2130)
  497. val = stepperX.getCurrent();
  498. #else
  499. val = 0;
  500. #endif
  501. EEPROM_WRITE(val);
  502. #if ENABLED(Y_IS_TMC2130)
  503. val = stepperY.getCurrent();
  504. #else
  505. val = 0;
  506. #endif
  507. EEPROM_WRITE(val);
  508. #if ENABLED(Z_IS_TMC2130)
  509. val = stepperZ.getCurrent();
  510. #else
  511. val = 0;
  512. #endif
  513. EEPROM_WRITE(val);
  514. #if ENABLED(X2_IS_TMC2130)
  515. val = stepperX2.getCurrent();
  516. #else
  517. val = 0;
  518. #endif
  519. EEPROM_WRITE(val);
  520. #if ENABLED(Y2_IS_TMC2130)
  521. val = stepperY2.getCurrent();
  522. #else
  523. val = 0;
  524. #endif
  525. EEPROM_WRITE(val);
  526. #if ENABLED(Z2_IS_TMC2130)
  527. val = stepperZ2.getCurrent();
  528. #else
  529. val = 0;
  530. #endif
  531. EEPROM_WRITE(val);
  532. #if ENABLED(E0_IS_TMC2130)
  533. val = stepperE0.getCurrent();
  534. #else
  535. val = 0;
  536. #endif
  537. EEPROM_WRITE(val);
  538. #if ENABLED(E1_IS_TMC2130)
  539. val = stepperE1.getCurrent();
  540. #else
  541. val = 0;
  542. #endif
  543. EEPROM_WRITE(val);
  544. #if ENABLED(E2_IS_TMC2130)
  545. val = stepperE2.getCurrent();
  546. #else
  547. val = 0;
  548. #endif
  549. EEPROM_WRITE(val);
  550. #if ENABLED(E3_IS_TMC2130)
  551. val = stepperE3.getCurrent();
  552. #else
  553. val = 0;
  554. #endif
  555. EEPROM_WRITE(val);
  556. #if ENABLED(E4_IS_TMC2130)
  557. val = stepperE4.getCurrent();
  558. #else
  559. val = 0;
  560. #endif
  561. EEPROM_WRITE(val);
  562. #else
  563. val = 0;
  564. for (uint8_t q = 11; q--;) EEPROM_WRITE(val);
  565. #endif
  566. //
  567. // Linear Advance
  568. //
  569. #if ENABLED(LIN_ADVANCE)
  570. EEPROM_WRITE(planner.extruder_advance_k);
  571. EEPROM_WRITE(planner.advance_ed_ratio);
  572. #else
  573. dummy = 0.0f;
  574. EEPROM_WRITE(dummy);
  575. EEPROM_WRITE(dummy);
  576. #endif
  577. #if HAS_MOTOR_CURRENT_PWM
  578. for (uint8_t q = 3; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]);
  579. #else
  580. const uint32_t dummyui32 = 0;
  581. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummyui32);
  582. #endif
  583. if (!eeprom_error) {
  584. const int eeprom_size = eeprom_index;
  585. const uint16_t final_crc = working_crc;
  586. // Write the EEPROM header
  587. eeprom_index = EEPROM_OFFSET;
  588. EEPROM_WRITE(version);
  589. EEPROM_WRITE(final_crc);
  590. // Report storage size
  591. #if ENABLED(EEPROM_CHITCHAT)
  592. SERIAL_ECHO_START();
  593. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
  594. SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)final_crc);
  595. SERIAL_ECHOLNPGM(")");
  596. #endif
  597. }
  598. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  599. if (ubl.state.storage_slot >= 0)
  600. store_mesh(ubl.state.storage_slot);
  601. #endif
  602. return !eeprom_error;
  603. }
  604. /**
  605. * M501 - Retrieve Configuration
  606. */
  607. bool MarlinSettings::load() {
  608. uint16_t working_crc = 0;
  609. EEPROM_START();
  610. char stored_ver[4];
  611. EEPROM_READ(stored_ver);
  612. uint16_t stored_crc;
  613. EEPROM_READ(stored_crc);
  614. // Version has to match or defaults are used
  615. if (strncmp(version, stored_ver, 3) != 0) {
  616. if (stored_ver[0] != 'V') {
  617. stored_ver[0] = '?';
  618. stored_ver[1] = '\0';
  619. }
  620. #if ENABLED(EEPROM_CHITCHAT)
  621. SERIAL_ECHO_START();
  622. SERIAL_ECHOPGM("EEPROM version mismatch ");
  623. SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
  624. SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
  625. #endif
  626. reset();
  627. }
  628. else {
  629. float dummy = 0;
  630. bool dummyb;
  631. working_crc = 0; //clear before reading first "real data"
  632. // Number of esteppers may change
  633. uint8_t esteppers;
  634. EEPROM_READ(esteppers);
  635. // Get only the number of E stepper parameters previously stored
  636. // Any steppers added later are set to their defaults
  637. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  638. const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
  639. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  640. uint32_t tmp3[XYZ + esteppers];
  641. EEPROM_READ(tmp1);
  642. EEPROM_READ(tmp2);
  643. EEPROM_READ(tmp3);
  644. LOOP_XYZE_N(i) {
  645. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  646. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  647. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  648. }
  649. EEPROM_READ(planner.acceleration);
  650. EEPROM_READ(planner.retract_acceleration);
  651. EEPROM_READ(planner.travel_acceleration);
  652. EEPROM_READ(planner.min_feedrate_mm_s);
  653. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  654. EEPROM_READ(planner.min_segment_time);
  655. EEPROM_READ(planner.max_jerk);
  656. #if !HAS_HOME_OFFSET
  657. float home_offset[XYZ];
  658. #endif
  659. EEPROM_READ(home_offset);
  660. #if ENABLED(DELTA)
  661. home_offset[X_AXIS] = 0.0;
  662. home_offset[Y_AXIS] = 0.0;
  663. home_offset[Z_AXIS] -= DELTA_HEIGHT;
  664. #endif
  665. #if HOTENDS > 1
  666. // Skip hotend 0 which must be 0
  667. for (uint8_t e = 1; e < HOTENDS; e++)
  668. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  669. #endif
  670. //
  671. // Global Leveling
  672. //
  673. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  674. EEPROM_READ(planner.z_fade_height);
  675. #else
  676. EEPROM_READ(dummy);
  677. #endif
  678. //
  679. // Mesh (Manual) Bed Leveling
  680. //
  681. bool leveling_is_on;
  682. uint8_t mesh_num_x, mesh_num_y;
  683. EEPROM_READ(leveling_is_on);
  684. EEPROM_READ(dummy);
  685. EEPROM_READ(mesh_num_x);
  686. EEPROM_READ(mesh_num_y);
  687. #if ENABLED(MESH_BED_LEVELING)
  688. mbl.status = leveling_is_on ? _BV(MBL_STATUS_HAS_MESH_BIT) : 0;
  689. mbl.z_offset = dummy;
  690. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  691. // EEPROM data fits the current mesh
  692. EEPROM_READ(mbl.z_values);
  693. }
  694. else {
  695. // EEPROM data is stale
  696. mbl.reset();
  697. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  698. }
  699. #else
  700. // MBL is disabled - skip the stored data
  701. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  702. #endif // MESH_BED_LEVELING
  703. #if !HAS_BED_PROBE
  704. float zprobe_zoffset;
  705. #endif
  706. EEPROM_READ(zprobe_zoffset);
  707. //
  708. // Planar Bed Leveling matrix
  709. //
  710. #if ABL_PLANAR
  711. EEPROM_READ(planner.bed_level_matrix);
  712. #else
  713. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  714. #endif
  715. //
  716. // Bilinear Auto Bed Leveling
  717. //
  718. uint8_t grid_max_x, grid_max_y;
  719. EEPROM_READ(grid_max_x); // 1 byte
  720. EEPROM_READ(grid_max_y); // 1 byte
  721. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  722. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  723. set_bed_leveling_enabled(false);
  724. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  725. EEPROM_READ(bilinear_start); // 2 ints
  726. EEPROM_READ(z_values); // 9 to 256 floats
  727. }
  728. else // EEPROM data is stale
  729. #endif // AUTO_BED_LEVELING_BILINEAR
  730. {
  731. // Skip past disabled (or stale) Bilinear Grid data
  732. int bgs[2], bs[2];
  733. EEPROM_READ(bgs);
  734. EEPROM_READ(bs);
  735. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  736. }
  737. #if ENABLED(AUTO_BED_LEVELING_UBL)
  738. EEPROM_READ(ubl.state.active);
  739. EEPROM_READ(ubl.state.z_offset);
  740. EEPROM_READ(ubl.state.storage_slot);
  741. #else
  742. uint8_t dummyui8;
  743. EEPROM_READ(dummyb);
  744. EEPROM_READ(dummy);
  745. EEPROM_READ(dummyui8);
  746. #endif // AUTO_BED_LEVELING_UBL
  747. #if ENABLED(DELTA)
  748. EEPROM_READ(endstop_adj); // 3 floats
  749. EEPROM_READ(delta_radius); // 1 float
  750. EEPROM_READ(delta_diagonal_rod); // 1 float
  751. EEPROM_READ(delta_segments_per_second); // 1 float
  752. EEPROM_READ(delta_calibration_radius); // 1 float
  753. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  754. dummy = 0.0f;
  755. for (uint8_t q=2; q--;) EEPROM_READ(dummy);
  756. #elif ENABLED(Z_DUAL_ENDSTOPS)
  757. EEPROM_READ(z_endstop_adj);
  758. dummy = 0.0f;
  759. for (uint8_t q=11; q--;) EEPROM_READ(dummy);
  760. #else
  761. dummy = 0.0f;
  762. for (uint8_t q=12; q--;) EEPROM_READ(dummy);
  763. #endif
  764. #if DISABLED(ULTIPANEL)
  765. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  766. #endif
  767. EEPROM_READ(lcd_preheat_hotend_temp);
  768. EEPROM_READ(lcd_preheat_bed_temp);
  769. EEPROM_READ(lcd_preheat_fan_speed);
  770. //EEPROM_ASSERT(
  771. // WITHIN(lcd_preheat_fan_speed, 0, 255),
  772. // "lcd_preheat_fan_speed out of range"
  773. //);
  774. #if ENABLED(PIDTEMP)
  775. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  776. EEPROM_READ(dummy); // Kp
  777. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  778. // do not need to scale PID values as the values in EEPROM are already scaled
  779. PID_PARAM(Kp, e) = dummy;
  780. EEPROM_READ(PID_PARAM(Ki, e));
  781. EEPROM_READ(PID_PARAM(Kd, e));
  782. #if ENABLED(PID_EXTRUSION_SCALING)
  783. EEPROM_READ(PID_PARAM(Kc, e));
  784. #else
  785. EEPROM_READ(dummy);
  786. #endif
  787. }
  788. else {
  789. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  790. }
  791. }
  792. #else // !PIDTEMP
  793. // 4 x 4 = 16 slots for PID parameters
  794. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  795. #endif // !PIDTEMP
  796. #if DISABLED(PID_EXTRUSION_SCALING)
  797. int lpq_len;
  798. #endif
  799. EEPROM_READ(lpq_len);
  800. #if ENABLED(PIDTEMPBED)
  801. EEPROM_READ(dummy); // bedKp
  802. if (dummy != DUMMY_PID_VALUE) {
  803. thermalManager.bedKp = dummy;
  804. EEPROM_READ(thermalManager.bedKi);
  805. EEPROM_READ(thermalManager.bedKd);
  806. }
  807. #else
  808. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  809. #endif
  810. #if !HAS_LCD_CONTRAST
  811. uint16_t lcd_contrast;
  812. #endif
  813. EEPROM_READ(lcd_contrast);
  814. #if ENABLED(FWRETRACT)
  815. EEPROM_READ(autoretract_enabled);
  816. EEPROM_READ(retract_length);
  817. EEPROM_READ(retract_feedrate_mm_s);
  818. EEPROM_READ(retract_zlift);
  819. EEPROM_READ(retract_recover_length);
  820. EEPROM_READ(retract_recover_feedrate_mm_s);
  821. EEPROM_READ(swap_retract_length);
  822. EEPROM_READ(swap_retract_recover_length);
  823. EEPROM_READ(swap_retract_recover_feedrate_mm_s);
  824. #else
  825. EEPROM_READ(dummyb);
  826. for (uint8_t q=8; q--;) EEPROM_READ(dummy);
  827. #endif
  828. EEPROM_READ(volumetric_enabled);
  829. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++)
  830. {
  831. EEPROM_READ(dummy);
  832. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  833. }
  834. uint16_t val;
  835. #if ENABLED(HAVE_TMC2130)
  836. EEPROM_READ(val);
  837. #if ENABLED(X_IS_TMC2130)
  838. stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  839. #endif
  840. EEPROM_READ(val);
  841. #if ENABLED(Y_IS_TMC2130)
  842. stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  843. #endif
  844. EEPROM_READ(val);
  845. #if ENABLED(Z_IS_TMC2130)
  846. stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  847. #endif
  848. EEPROM_READ(val);
  849. #if ENABLED(X2_IS_TMC2130)
  850. stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  851. #endif
  852. EEPROM_READ(val);
  853. #if ENABLED(Y2_IS_TMC2130)
  854. stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  855. #endif
  856. EEPROM_READ(val);
  857. #if ENABLED(Z2_IS_TMC2130)
  858. stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  859. #endif
  860. EEPROM_READ(val);
  861. #if ENABLED(E0_IS_TMC2130)
  862. stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  863. #endif
  864. EEPROM_READ(val);
  865. #if ENABLED(E1_IS_TMC2130)
  866. stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  867. #endif
  868. EEPROM_READ(val);
  869. #if ENABLED(E2_IS_TMC2130)
  870. stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  871. #endif
  872. EEPROM_READ(val);
  873. #if ENABLED(E3_IS_TMC2130)
  874. stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  875. #endif
  876. EEPROM_READ(val);
  877. #if ENABLED(E4_IS_TMC2130)
  878. stepperE4.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  879. #endif
  880. #else
  881. for (uint8_t q = 0; q < 11; q++) EEPROM_READ(val);
  882. #endif
  883. //
  884. // Linear Advance
  885. //
  886. #if ENABLED(LIN_ADVANCE)
  887. EEPROM_READ(planner.extruder_advance_k);
  888. EEPROM_READ(planner.advance_ed_ratio);
  889. #else
  890. EEPROM_READ(dummy);
  891. EEPROM_READ(dummy);
  892. #endif
  893. #if HAS_MOTOR_CURRENT_PWM
  894. for (uint8_t q = 3; q--;) EEPROM_READ(stepper.motor_current_setting[q]);
  895. #else
  896. uint32_t dummyui32;
  897. for (uint8_t q = 3; q--;) EEPROM_READ(dummyui32);
  898. #endif
  899. if (working_crc == stored_crc) {
  900. postprocess();
  901. #if ENABLED(EEPROM_CHITCHAT)
  902. SERIAL_ECHO_START();
  903. SERIAL_ECHO(version);
  904. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  905. SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)working_crc);
  906. SERIAL_ECHOLNPGM(")");
  907. #endif
  908. }
  909. else {
  910. #if ENABLED(EEPROM_CHITCHAT)
  911. SERIAL_ERROR_START();
  912. SERIAL_ERRORPGM("EEPROM CRC mismatch - (stored) ");
  913. SERIAL_ERROR(stored_crc);
  914. SERIAL_ERRORPGM(" != ");
  915. SERIAL_ERROR(working_crc);
  916. SERIAL_ERRORLNPGM(" (calculated)!");
  917. #endif
  918. reset();
  919. }
  920. #if ENABLED(AUTO_BED_LEVELING_UBL)
  921. meshes_begin = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
  922. // can float up or down a little bit without
  923. // disrupting the mesh data
  924. ubl.report_state();
  925. if (!ubl.sanity_check()) {
  926. SERIAL_EOL();
  927. #if ENABLED(EEPROM_CHITCHAT)
  928. ubl.echo_name();
  929. SERIAL_ECHOLNPGM(" initialized.\n");
  930. #endif
  931. }
  932. else {
  933. #if ENABLED(EEPROM_CHITCHAT)
  934. SERIAL_PROTOCOLPGM("?Can't enable ");
  935. ubl.echo_name();
  936. SERIAL_PROTOCOLLNPGM(".");
  937. #endif
  938. ubl.reset();
  939. }
  940. if (ubl.state.storage_slot >= 0) {
  941. load_mesh(ubl.state.storage_slot);
  942. #if ENABLED(EEPROM_CHITCHAT)
  943. SERIAL_ECHOPAIR("Mesh ", ubl.state.storage_slot);
  944. SERIAL_ECHOLNPGM(" loaded from storage.");
  945. #endif
  946. }
  947. else {
  948. ubl.reset();
  949. #if ENABLED(EEPROM_CHITCHAT)
  950. SERIAL_ECHOLNPGM("UBL System reset()");
  951. #endif
  952. }
  953. #endif
  954. }
  955. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  956. report();
  957. #endif
  958. return !eeprom_error;
  959. }
  960. #if ENABLED(AUTO_BED_LEVELING_UBL)
  961. #if ENABLED(EEPROM_CHITCHAT)
  962. void ubl_invalid_slot(const int s) {
  963. SERIAL_PROTOCOLLNPGM("?Invalid slot.");
  964. SERIAL_PROTOCOL(s);
  965. SERIAL_PROTOCOLLNPGM(" mesh slots available.");
  966. }
  967. #endif
  968. int MarlinSettings::calc_num_meshes() {
  969. //obviously this will get more sophisticated once we've added an actual MAT
  970. if (meshes_begin <= 0) return 0;
  971. return (meshes_end - meshes_begin) / sizeof(ubl.z_values);
  972. }
  973. void MarlinSettings::store_mesh(int8_t slot) {
  974. #if ENABLED(AUTO_BED_LEVELING_UBL)
  975. const int a = calc_num_meshes();
  976. if (!WITHIN(slot, 0, a - 1)) {
  977. #if ENABLED(EEPROM_CHITCHAT)
  978. ubl_invalid_slot(a);
  979. SERIAL_PROTOCOLPAIR("E2END=", E2END);
  980. SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
  981. SERIAL_PROTOCOLLNPAIR(" slot=", slot);
  982. SERIAL_EOL();
  983. #endif
  984. return;
  985. }
  986. uint16_t crc = 0;
  987. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  988. write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  989. // Write crc to MAT along with other data, or just tack on to the beginning or end
  990. #if ENABLED(EEPROM_CHITCHAT)
  991. SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
  992. #endif
  993. #else
  994. // Other mesh types
  995. #endif
  996. }
  997. void MarlinSettings::load_mesh(int8_t slot, void *into /* = 0 */) {
  998. #if ENABLED(AUTO_BED_LEVELING_UBL)
  999. const int16_t a = settings.calc_num_meshes();
  1000. if (!WITHIN(slot, 0, a - 1)) {
  1001. #if ENABLED(EEPROM_CHITCHAT)
  1002. ubl_invalid_slot(a);
  1003. #endif
  1004. return;
  1005. }
  1006. uint16_t crc = 0;
  1007. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1008. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1009. read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1010. // Compare crc with crc from MAT, or read from end
  1011. #if ENABLED(EEPROM_CHITCHAT)
  1012. SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
  1013. #endif
  1014. #else
  1015. // Other mesh types
  1016. #endif
  1017. }
  1018. //void MarlinSettings::delete_mesh() { return; }
  1019. //void MarlinSettings::defrag_meshes() { return; }
  1020. #endif // AUTO_BED_LEVELING_UBL
  1021. #else // !EEPROM_SETTINGS
  1022. bool MarlinSettings::save() {
  1023. SERIAL_ERROR_START();
  1024. SERIAL_ERRORLNPGM("EEPROM disabled");
  1025. return false;
  1026. }
  1027. #endif // !EEPROM_SETTINGS
  1028. /**
  1029. * M502 - Reset Configuration
  1030. */
  1031. void MarlinSettings::reset() {
  1032. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1033. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1034. LOOP_XYZE_N(i) {
  1035. planner.axis_steps_per_mm[i] = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]);
  1036. planner.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]);
  1037. planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]);
  1038. }
  1039. planner.acceleration = DEFAULT_ACCELERATION;
  1040. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1041. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1042. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1043. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  1044. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1045. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1046. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1047. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1048. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1049. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1050. planner.z_fade_height = 0.0;
  1051. #endif
  1052. #if HAS_HOME_OFFSET
  1053. ZERO(home_offset);
  1054. #endif
  1055. #if HOTENDS > 1
  1056. constexpr float tmp4[XYZ][HOTENDS] = {
  1057. HOTEND_OFFSET_X,
  1058. HOTEND_OFFSET_Y
  1059. #ifdef HOTEND_OFFSET_Z
  1060. , HOTEND_OFFSET_Z
  1061. #else
  1062. , { 0 }
  1063. #endif
  1064. };
  1065. static_assert(
  1066. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  1067. "Offsets for the first hotend must be 0.0."
  1068. );
  1069. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  1070. #endif
  1071. // Applies to all MBL and ABL
  1072. #if HAS_LEVELING
  1073. reset_bed_level();
  1074. #endif
  1075. #if HAS_BED_PROBE
  1076. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1077. #endif
  1078. #if ENABLED(DELTA)
  1079. const float adj[ABC] = DELTA_ENDSTOP_ADJ,
  1080. dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1081. COPY(endstop_adj, adj);
  1082. delta_radius = DELTA_RADIUS;
  1083. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1084. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1085. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1086. COPY(delta_tower_angle_trim, dta);
  1087. home_offset[Z_AXIS] = 0;
  1088. #elif ENABLED(Z_DUAL_ENDSTOPS)
  1089. z_endstop_adj =
  1090. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1091. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1092. #else
  1093. 0
  1094. #endif
  1095. ;
  1096. #endif
  1097. #if ENABLED(ULTIPANEL)
  1098. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1099. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1100. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1101. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1102. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1103. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1104. #endif
  1105. #if HAS_LCD_CONTRAST
  1106. lcd_contrast = DEFAULT_LCD_CONTRAST;
  1107. #endif
  1108. #if ENABLED(PIDTEMP)
  1109. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  1110. HOTEND_LOOP()
  1111. #endif
  1112. {
  1113. PID_PARAM(Kp, e) = DEFAULT_Kp;
  1114. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1115. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1116. #if ENABLED(PID_EXTRUSION_SCALING)
  1117. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1118. #endif
  1119. }
  1120. #if ENABLED(PID_EXTRUSION_SCALING)
  1121. lpq_len = 20; // default last-position-queue size
  1122. #endif
  1123. #endif // PIDTEMP
  1124. #if ENABLED(PIDTEMPBED)
  1125. thermalManager.bedKp = DEFAULT_bedKp;
  1126. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  1127. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  1128. #endif
  1129. #if ENABLED(FWRETRACT)
  1130. autoretract_enabled = false;
  1131. retract_length = RETRACT_LENGTH;
  1132. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  1133. retract_zlift = RETRACT_ZLIFT;
  1134. retract_recover_length = RETRACT_RECOVER_LENGTH;
  1135. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  1136. swap_retract_length = RETRACT_LENGTH_SWAP;
  1137. swap_retract_recover_length = RETRACT_RECOVER_LENGTH_SWAP;
  1138. swap_retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE_SWAP;
  1139. #endif // FWRETRACT
  1140. volumetric_enabled =
  1141. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1142. true
  1143. #else
  1144. false
  1145. #endif
  1146. ;
  1147. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  1148. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1149. endstops.enable_globally(
  1150. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1151. true
  1152. #else
  1153. false
  1154. #endif
  1155. );
  1156. #if ENABLED(HAVE_TMC2130)
  1157. #if ENABLED(X_IS_TMC2130)
  1158. stepperX.setCurrent(X_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1159. #endif
  1160. #if ENABLED(Y_IS_TMC2130)
  1161. stepperY.setCurrent(Y_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1162. #endif
  1163. #if ENABLED(Z_IS_TMC2130)
  1164. stepperZ.setCurrent(Z_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1165. #endif
  1166. #if ENABLED(X2_IS_TMC2130)
  1167. stepperX2.setCurrent(X2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1168. #endif
  1169. #if ENABLED(Y2_IS_TMC2130)
  1170. stepperY2.setCurrent(Y2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1171. #endif
  1172. #if ENABLED(Z2_IS_TMC2130)
  1173. stepperZ2.setCurrent(Z2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1174. #endif
  1175. #if ENABLED(E0_IS_TMC2130)
  1176. stepperE0.setCurrent(E0_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1177. #endif
  1178. #if ENABLED(E1_IS_TMC2130)
  1179. stepperE1.setCurrent(E1_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1180. #endif
  1181. #if ENABLED(E2_IS_TMC2130)
  1182. stepperE2.setCurrent(E2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1183. #endif
  1184. #if ENABLED(E3_IS_TMC2130)
  1185. stepperE3.setCurrent(E3_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1186. #endif
  1187. #endif
  1188. #if ENABLED(LIN_ADVANCE)
  1189. planner.extruder_advance_k = LIN_ADVANCE_K;
  1190. planner.advance_ed_ratio = LIN_ADVANCE_E_D_RATIO;
  1191. #endif
  1192. #if HAS_MOTOR_CURRENT_PWM
  1193. uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  1194. for (uint8_t q = 3; q--;)
  1195. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1196. #endif
  1197. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1198. ubl.reset();
  1199. #endif
  1200. postprocess();
  1201. #if ENABLED(EEPROM_CHITCHAT)
  1202. SERIAL_ECHO_START();
  1203. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  1204. #endif
  1205. }
  1206. #if DISABLED(DISABLE_M503)
  1207. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  1208. /**
  1209. * M503 - Report current settings in RAM
  1210. *
  1211. * Unless specifically disabled, M503 is available even without EEPROM
  1212. */
  1213. void MarlinSettings::report(bool forReplay) {
  1214. /**
  1215. * Announce current units, in case inches are being displayed
  1216. */
  1217. CONFIG_ECHO_START;
  1218. #if ENABLED(INCH_MODE_SUPPORT)
  1219. #define LINEAR_UNIT(N) ((N) / parser.linear_unit_factor)
  1220. #define VOLUMETRIC_UNIT(N) ((N) / (volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
  1221. SERIAL_ECHOPGM(" G2");
  1222. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  1223. SERIAL_ECHOPGM(" ; Units in ");
  1224. serialprintPGM(parser.linear_unit_factor == 1.0 ? PSTR("mm\n") : PSTR("inches\n"));
  1225. #else
  1226. #define LINEAR_UNIT(N) N
  1227. #define VOLUMETRIC_UNIT(N) N
  1228. SERIAL_ECHOLNPGM(" G21 ; Units in mm");
  1229. #endif
  1230. #if ENABLED(ULTIPANEL)
  1231. // Temperature units - for Ultipanel temperature options
  1232. CONFIG_ECHO_START;
  1233. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1234. #define TEMP_UNIT(N) parser.to_temp_units(N)
  1235. SERIAL_ECHOPGM(" M149 ");
  1236. SERIAL_CHAR(parser.temp_units_code());
  1237. SERIAL_ECHOPGM(" ; Units in ");
  1238. serialprintPGM(parser.temp_units_name());
  1239. #else
  1240. #define TEMP_UNIT(N) N
  1241. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  1242. #endif
  1243. #endif
  1244. SERIAL_EOL();
  1245. /**
  1246. * Volumetric extrusion M200
  1247. */
  1248. if (!forReplay) {
  1249. CONFIG_ECHO_START;
  1250. SERIAL_ECHOPGM("Filament settings:");
  1251. if (volumetric_enabled)
  1252. SERIAL_EOL();
  1253. else
  1254. SERIAL_ECHOLNPGM(" Disabled");
  1255. }
  1256. CONFIG_ECHO_START;
  1257. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  1258. SERIAL_EOL();
  1259. #if EXTRUDERS > 1
  1260. CONFIG_ECHO_START;
  1261. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  1262. SERIAL_EOL();
  1263. #if EXTRUDERS > 2
  1264. CONFIG_ECHO_START;
  1265. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  1266. SERIAL_EOL();
  1267. #if EXTRUDERS > 3
  1268. CONFIG_ECHO_START;
  1269. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  1270. SERIAL_EOL();
  1271. #if EXTRUDERS > 4
  1272. CONFIG_ECHO_START;
  1273. SERIAL_ECHOPAIR(" M200 T4 D", filament_size[4]);
  1274. SERIAL_EOL();
  1275. #endif // EXTRUDERS > 4
  1276. #endif // EXTRUDERS > 3
  1277. #endif // EXTRUDERS > 2
  1278. #endif // EXTRUDERS > 1
  1279. if (!volumetric_enabled) {
  1280. CONFIG_ECHO_START;
  1281. SERIAL_ECHOLNPGM(" M200 D0");
  1282. }
  1283. if (!forReplay) {
  1284. CONFIG_ECHO_START;
  1285. SERIAL_ECHOLNPGM("Steps per unit:");
  1286. }
  1287. CONFIG_ECHO_START;
  1288. SERIAL_ECHOPAIR(" M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
  1289. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
  1290. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
  1291. #if DISABLED(DISTINCT_E_FACTORS)
  1292. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
  1293. #endif
  1294. SERIAL_EOL();
  1295. #if ENABLED(DISTINCT_E_FACTORS)
  1296. CONFIG_ECHO_START;
  1297. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1298. SERIAL_ECHOPAIR(" M92 T", (int)i);
  1299. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
  1300. }
  1301. #endif
  1302. if (!forReplay) {
  1303. CONFIG_ECHO_START;
  1304. SERIAL_ECHOLNPGM("Maximum feedrates (units/s):");
  1305. }
  1306. CONFIG_ECHO_START;
  1307. SERIAL_ECHOPAIR(" M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
  1308. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
  1309. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
  1310. #if DISABLED(DISTINCT_E_FACTORS)
  1311. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
  1312. #endif
  1313. SERIAL_EOL();
  1314. #if ENABLED(DISTINCT_E_FACTORS)
  1315. CONFIG_ECHO_START;
  1316. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1317. SERIAL_ECHOPAIR(" M203 T", (int)i);
  1318. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
  1319. }
  1320. #endif
  1321. if (!forReplay) {
  1322. CONFIG_ECHO_START;
  1323. SERIAL_ECHOLNPGM("Maximum Acceleration (units/s2):");
  1324. }
  1325. CONFIG_ECHO_START;
  1326. SERIAL_ECHOPAIR(" M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
  1327. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
  1328. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
  1329. #if DISABLED(DISTINCT_E_FACTORS)
  1330. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
  1331. #endif
  1332. SERIAL_EOL();
  1333. #if ENABLED(DISTINCT_E_FACTORS)
  1334. CONFIG_ECHO_START;
  1335. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1336. SERIAL_ECHOPAIR(" M201 T", (int)i);
  1337. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
  1338. }
  1339. #endif
  1340. if (!forReplay) {
  1341. CONFIG_ECHO_START;
  1342. SERIAL_ECHOLNPGM("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  1343. }
  1344. CONFIG_ECHO_START;
  1345. SERIAL_ECHOPAIR(" M204 P", LINEAR_UNIT(planner.acceleration));
  1346. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(planner.retract_acceleration));
  1347. SERIAL_ECHOLNPAIR(" T", LINEAR_UNIT(planner.travel_acceleration));
  1348. if (!forReplay) {
  1349. CONFIG_ECHO_START;
  1350. SERIAL_ECHOLNPGM("Advanced: S<min_feedrate> T<min_travel_feedrate> B<min_segment_time_ms> X<max_xy_jerk> Z<max_z_jerk> E<max_e_jerk>");
  1351. }
  1352. CONFIG_ECHO_START;
  1353. SERIAL_ECHOPAIR(" M205 S", LINEAR_UNIT(planner.min_feedrate_mm_s));
  1354. SERIAL_ECHOPAIR(" T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
  1355. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  1356. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  1357. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  1358. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  1359. SERIAL_ECHOLNPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  1360. #if HAS_M206_COMMAND
  1361. if (!forReplay) {
  1362. CONFIG_ECHO_START;
  1363. SERIAL_ECHOLNPGM("Home offset:");
  1364. }
  1365. CONFIG_ECHO_START;
  1366. SERIAL_ECHOPAIR(" M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  1367. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  1368. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  1369. #endif
  1370. #if HOTENDS > 1
  1371. if (!forReplay) {
  1372. CONFIG_ECHO_START;
  1373. SERIAL_ECHOLNPGM("Hotend offsets:");
  1374. }
  1375. CONFIG_ECHO_START;
  1376. for (uint8_t e = 1; e < HOTENDS; e++) {
  1377. SERIAL_ECHOPAIR(" M218 T", (int)e);
  1378. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  1379. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  1380. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) ||ENABLED(PARKING_EXTRUDER)
  1381. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
  1382. #endif
  1383. SERIAL_EOL();
  1384. }
  1385. #endif
  1386. #if ENABLED(MESH_BED_LEVELING)
  1387. if (!forReplay) {
  1388. CONFIG_ECHO_START;
  1389. SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
  1390. }
  1391. CONFIG_ECHO_START;
  1392. SERIAL_ECHOPAIR(" M420 S", leveling_is_valid() ? 1 : 0);
  1393. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1394. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
  1395. #endif
  1396. SERIAL_EOL();
  1397. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  1398. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  1399. CONFIG_ECHO_START;
  1400. SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1);
  1401. SERIAL_ECHOPAIR(" Y", (int)py + 1);
  1402. SERIAL_ECHOPGM(" Z");
  1403. SERIAL_PROTOCOL_F(LINEAR_UNIT(mbl.z_values[px][py]), 5);
  1404. SERIAL_EOL();
  1405. }
  1406. }
  1407. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1408. if (!forReplay) {
  1409. CONFIG_ECHO_START;
  1410. ubl.echo_name();
  1411. SERIAL_ECHOLNPGM(":");
  1412. }
  1413. CONFIG_ECHO_START;
  1414. SERIAL_ECHOPAIR(" M420 S", leveling_is_active() ? 1 : 0);
  1415. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1416. SERIAL_ECHOPAIR(" Z", planner.z_fade_height);
  1417. #endif
  1418. SERIAL_EOL();
  1419. if (!forReplay) {
  1420. SERIAL_EOL();
  1421. ubl.report_state();
  1422. SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.state.storage_slot);
  1423. SERIAL_ECHOPGM("z_offset: ");
  1424. SERIAL_ECHO_F(ubl.state.z_offset, 6);
  1425. SERIAL_EOL();
  1426. SERIAL_ECHOPAIR("EEPROM can hold ", calc_num_meshes());
  1427. SERIAL_ECHOLNPGM(" meshes.\n");
  1428. }
  1429. #elif HAS_ABL
  1430. if (!forReplay) {
  1431. CONFIG_ECHO_START;
  1432. SERIAL_ECHOLNPGM("Auto Bed Leveling:");
  1433. }
  1434. CONFIG_ECHO_START;
  1435. SERIAL_ECHOPAIR(" M420 S", leveling_is_active() ? 1 : 0);
  1436. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1437. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
  1438. #endif
  1439. SERIAL_EOL();
  1440. #endif
  1441. #if ENABLED(DELTA)
  1442. if (!forReplay) {
  1443. CONFIG_ECHO_START;
  1444. SERIAL_ECHOLNPGM("Endstop adjustment:");
  1445. }
  1446. CONFIG_ECHO_START;
  1447. SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(endstop_adj[X_AXIS]));
  1448. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(endstop_adj[Y_AXIS]));
  1449. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(endstop_adj[Z_AXIS]));
  1450. if (!forReplay) {
  1451. CONFIG_ECHO_START;
  1452. SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  1453. }
  1454. CONFIG_ECHO_START;
  1455. SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod));
  1456. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
  1457. SERIAL_ECHOPAIR(" H", LINEAR_UNIT(DELTA_HEIGHT + home_offset[Z_AXIS]));
  1458. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  1459. SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
  1460. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  1461. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  1462. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
  1463. SERIAL_EOL();
  1464. #elif ENABLED(Z_DUAL_ENDSTOPS)
  1465. if (!forReplay) {
  1466. CONFIG_ECHO_START;
  1467. SERIAL_ECHOLNPGM("Z2 Endstop adjustment:");
  1468. }
  1469. CONFIG_ECHO_START;
  1470. SERIAL_ECHOLNPAIR(" M666 Z", LINEAR_UNIT(z_endstop_adj));
  1471. #endif // DELTA
  1472. #if ENABLED(ULTIPANEL)
  1473. if (!forReplay) {
  1474. CONFIG_ECHO_START;
  1475. SERIAL_ECHOLNPGM("Material heatup parameters:");
  1476. }
  1477. CONFIG_ECHO_START;
  1478. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  1479. SERIAL_ECHOPAIR(" M145 S", (int)i);
  1480. SERIAL_ECHOPAIR(" H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
  1481. SERIAL_ECHOPAIR(" B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
  1482. SERIAL_ECHOLNPAIR(" F", lcd_preheat_fan_speed[i]);
  1483. }
  1484. #endif // ULTIPANEL
  1485. #if HAS_PID_HEATING
  1486. if (!forReplay) {
  1487. CONFIG_ECHO_START;
  1488. SERIAL_ECHOLNPGM("PID settings:");
  1489. }
  1490. #if ENABLED(PIDTEMP)
  1491. #if HOTENDS > 1
  1492. if (forReplay) {
  1493. HOTEND_LOOP() {
  1494. CONFIG_ECHO_START;
  1495. SERIAL_ECHOPAIR(" M301 E", e);
  1496. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  1497. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  1498. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  1499. #if ENABLED(PID_EXTRUSION_SCALING)
  1500. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  1501. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  1502. #endif
  1503. SERIAL_EOL();
  1504. }
  1505. }
  1506. else
  1507. #endif // HOTENDS > 1
  1508. // !forReplay || HOTENDS == 1
  1509. {
  1510. CONFIG_ECHO_START;
  1511. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  1512. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  1513. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  1514. #if ENABLED(PID_EXTRUSION_SCALING)
  1515. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  1516. SERIAL_ECHOPAIR(" L", lpq_len);
  1517. #endif
  1518. SERIAL_EOL();
  1519. }
  1520. #endif // PIDTEMP
  1521. #if ENABLED(PIDTEMPBED)
  1522. CONFIG_ECHO_START;
  1523. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  1524. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  1525. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  1526. SERIAL_EOL();
  1527. #endif
  1528. #endif // PIDTEMP || PIDTEMPBED
  1529. #if HAS_LCD_CONTRAST
  1530. if (!forReplay) {
  1531. CONFIG_ECHO_START;
  1532. SERIAL_ECHOLNPGM("LCD Contrast:");
  1533. }
  1534. CONFIG_ECHO_START;
  1535. SERIAL_ECHOLNPAIR(" M250 C", lcd_contrast);
  1536. #endif
  1537. #if ENABLED(FWRETRACT)
  1538. if (!forReplay) {
  1539. CONFIG_ECHO_START;
  1540. SERIAL_ECHOLNPGM("Retract: S<length> F<units/m> Z<lift>");
  1541. }
  1542. CONFIG_ECHO_START;
  1543. SERIAL_ECHOPAIR(" M207 S", LINEAR_UNIT(retract_length));
  1544. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(swap_retract_length));
  1545. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_feedrate_mm_s)));
  1546. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(retract_zlift));
  1547. if (!forReplay) {
  1548. CONFIG_ECHO_START;
  1549. SERIAL_ECHOLNPGM("Recover: S<length> F<units/m>");
  1550. }
  1551. CONFIG_ECHO_START;
  1552. SERIAL_ECHOPAIR(" M208 S", LINEAR_UNIT(retract_recover_length));
  1553. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(swap_retract_recover_length));
  1554. SERIAL_ECHOLNPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_recover_feedrate_mm_s)));
  1555. if (!forReplay) {
  1556. CONFIG_ECHO_START;
  1557. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  1558. }
  1559. CONFIG_ECHO_START;
  1560. SERIAL_ECHOLNPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  1561. #endif // FWRETRACT
  1562. /**
  1563. * Auto Bed Leveling
  1564. */
  1565. #if HAS_BED_PROBE
  1566. if (!forReplay) {
  1567. CONFIG_ECHO_START;
  1568. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  1569. }
  1570. CONFIG_ECHO_START;
  1571. SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
  1572. #endif
  1573. /**
  1574. * TMC2130 stepper driver current
  1575. */
  1576. #if ENABLED(HAVE_TMC2130)
  1577. if (!forReplay) {
  1578. CONFIG_ECHO_START;
  1579. SERIAL_ECHOLNPGM("Stepper driver current:");
  1580. }
  1581. CONFIG_ECHO_START;
  1582. SERIAL_ECHO(" M906");
  1583. #if ENABLED(X_IS_TMC2130)
  1584. SERIAL_ECHOPAIR(" X", stepperX.getCurrent());
  1585. #endif
  1586. #if ENABLED(Y_IS_TMC2130)
  1587. SERIAL_ECHOPAIR(" Y", stepperY.getCurrent());
  1588. #endif
  1589. #if ENABLED(Z_IS_TMC2130)
  1590. SERIAL_ECHOPAIR(" Z", stepperZ.getCurrent());
  1591. #endif
  1592. #if ENABLED(X2_IS_TMC2130)
  1593. SERIAL_ECHOPAIR(" X2", stepperX2.getCurrent());
  1594. #endif
  1595. #if ENABLED(Y2_IS_TMC2130)
  1596. SERIAL_ECHOPAIR(" Y2", stepperY2.getCurrent());
  1597. #endif
  1598. #if ENABLED(Z2_IS_TMC2130)
  1599. SERIAL_ECHOPAIR(" Z2", stepperZ2.getCurrent());
  1600. #endif
  1601. #if ENABLED(E0_IS_TMC2130)
  1602. SERIAL_ECHOPAIR(" E0", stepperE0.getCurrent());
  1603. #endif
  1604. #if ENABLED(E1_IS_TMC2130)
  1605. SERIAL_ECHOPAIR(" E1", stepperE1.getCurrent());
  1606. #endif
  1607. #if ENABLED(E2_IS_TMC2130)
  1608. SERIAL_ECHOPAIR(" E2", stepperE2.getCurrent());
  1609. #endif
  1610. #if ENABLED(E3_IS_TMC2130)
  1611. SERIAL_ECHOPAIR(" E3", stepperE3.getCurrent());
  1612. #endif
  1613. SERIAL_EOL();
  1614. #endif
  1615. /**
  1616. * Linear Advance
  1617. */
  1618. #if ENABLED(LIN_ADVANCE)
  1619. if (!forReplay) {
  1620. CONFIG_ECHO_START;
  1621. SERIAL_ECHOLNPGM("Linear Advance:");
  1622. }
  1623. CONFIG_ECHO_START;
  1624. SERIAL_ECHOPAIR(" M900 K", planner.extruder_advance_k);
  1625. SERIAL_ECHOLNPAIR(" R", planner.advance_ed_ratio);
  1626. #endif
  1627. #if HAS_MOTOR_CURRENT_PWM
  1628. CONFIG_ECHO_START;
  1629. if (!forReplay) {
  1630. SERIAL_ECHOLNPGM("Stepper motor currents:");
  1631. CONFIG_ECHO_START;
  1632. }
  1633. SERIAL_ECHOPAIR(" M907 X", stepper.motor_current_setting[0]);
  1634. SERIAL_ECHOPAIR(" Z", stepper.motor_current_setting[1]);
  1635. SERIAL_ECHOPAIR(" E", stepper.motor_current_setting[2]);
  1636. SERIAL_EOL();
  1637. #endif
  1638. }
  1639. #endif // !DISABLE_M503